

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0121 of 30 March 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer frame fixing SXR/ SXRL

Plastic anchor for multiple use in concrete and masonry for non-structural applications

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic Anchors for Multiple Use in Concrete and Masonry for Non", ETAG 020 structural Applications - Part 1: "General", edition March 2012, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-07/0121 issued on 10 April 2015

European Technical Assessment ETA-07/0121

English translation prepared by DIBt

Page 2 of 32 | 30 March 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z7147.17 8.06.04-192/16

European Technical Assessment ETA-07/0121

Page 3 of 32 | 30 March 2017

English translation prepared by DIBt

Specific part

1 Technical description of the product

The fischer frame fixing in the range SXR 8, SXRL 8, SXR 10, SXRL 10 and SXRL 14 is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel, of galvanised steel with an additional Duplex-coating or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Anchorages satisfy requirements for Class A 1				
Resistance to fire	See Annex C 2				

3.3 Safety and accessibility (BWR 4)

Essential characteristic	Performance				
Characteristic resistance for tension and shear loads	See Annexes C 1, C 3 – C 20				
Characteristic resistance for bending moments	See Annex C 1				
Displacements under shear and tension loads	See Annex C 2				
Anchor distances and dimensions of members	See Annex B 3, B 4				

3.4 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

Z7147.17 8.06.04-192/16

European Technical Assessment ETA-07/0121

Page 4 of 32 | 30 March 2017

English translation prepared by DIBt

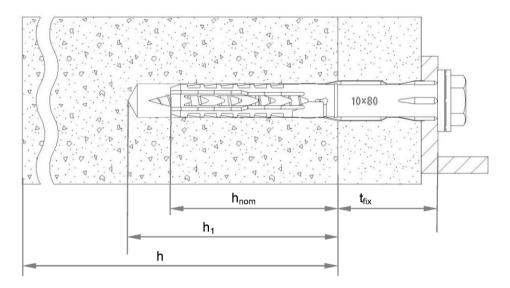
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 020, March 2012 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC.

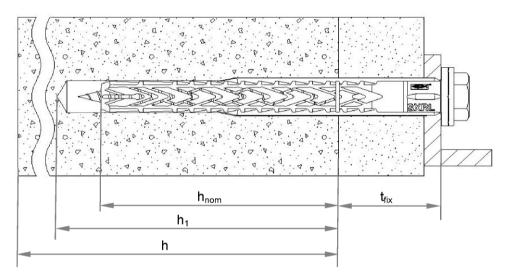
The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 30 March 2017 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentZiegler


Z7147.17 8.06.04-192/16

SXRL (e.g. with h_{nom2})

Legend

 h_{nom} = overall plastic anchor embedment depth in the base material

 h_1 = depth of drill hole to deepest point

h = thickness of member (wall)

t_{fix} = thickness of fixture and / or non-load bearing layer

fischer frame fixing SXR / SXRL	
Product description Installed anchor	Annex A 1

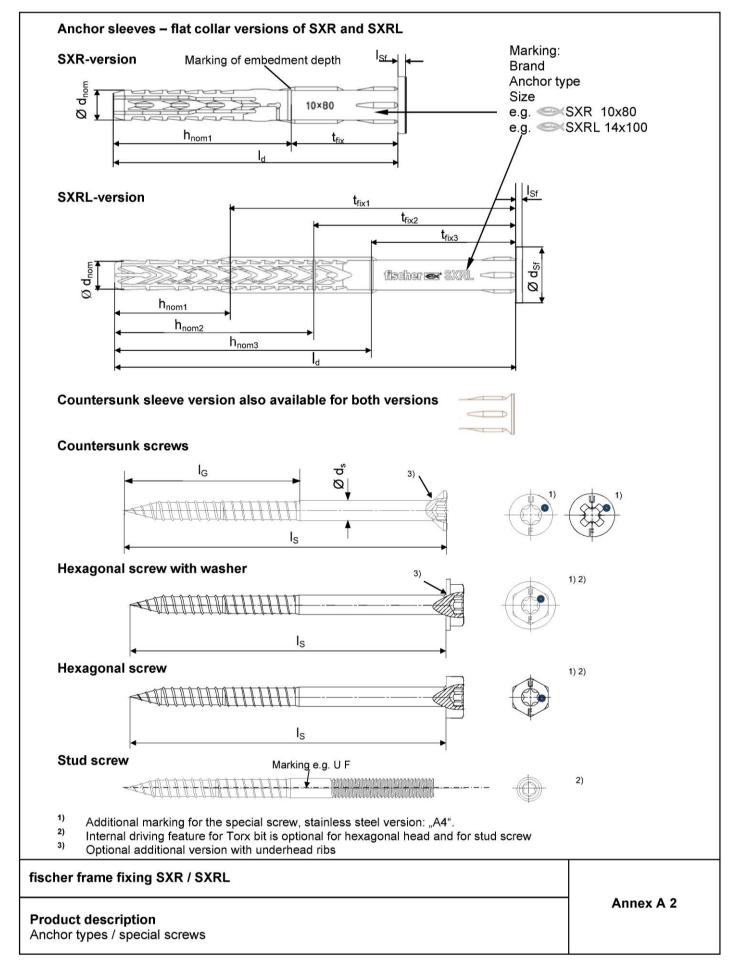


Table A3.1: Dimensions [mm]

Anchor type		Anchor sleeve										Special screw		
	h _{nom1} [mm]	h _{nom2} [mm]	h _{nom3} [mm]	Ø d _{nom} [mm]	t _{fix} [mm]	min. l _d [mm]	max. l _d [mm]	l _{Sf} 1) [mm]	Ø d _{Sf} [mm]	Ø d _s [mm]	l _G [mm]	l s [mm]		
SXR 8	50	-		8	≥ 1	51	360	1,8	> 15,0	6,0	≥ 55	≥ I _d + 6		
SXRL 8	50	70	90	8	≥ 1	51	360	1,8	> 15,0	6,0	≥ 55	≥ I _d + 6		
SXR 10	50	-	•	10	≥ 1	51	360	2,2	> 18,5	7,0	≥ 57	≥ I _d + 7		
SXRL 10	50 ²⁾	70	90	10	≥1	51	360	2,2	> 18,5	7,0	≥ 77	≥ I _d + 7		
SXRL 14	-	70	90	14	≥1	71	600	3,1	> 24,0	9,6	≥ 63	≥ I _d + 10		

Only valid for flat collar version

Table A3.2: Materials

Name	Material
Anchor sleeve	Polyamide, PA6, colour grey
Special screw	- Steel gvz A2G or A2F acc. to EN ISO 4042:2001 - Steel gvz A2G or A2F acc. to EN ISO 4042:2001+ Duplex-coating type Delta-Seal in three layers (total layer thickness ≥ 6 μm) - Stainless steel acc. to EN 10 088-3:2014, e.g. 1.4401, 1.4571, 1.4578, 1.4362

fischer frame fixing SXR / SXRL	
Product description Dimensions and materials	Annex A 3

²⁾ Marking optional

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Multiple fixing of non-structural applications.

Base materials:

- Reinforced or unreinforced normal weight concrete with strength classes ≥ C12/15 (use category "a"), according to EN 206-1:2000.
- Solid brick masonry (use category "b"), according to Annex C3 C7.

 Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- Hollow brick masonry (use category "c"), according to Annex C7 C19.
- Autoclaved aerated concrete (use category "d"), according to Annex C20.
- Mortar strength class of the masonry ≥ M2,5 according to EN 998-2:2010.
- For other base materials of the use categories "a", "b", "c" and "d" the characteristic resistance of the anchor may be determined by job site tests according to ETAG 020, Annex B, Edition March 2012.

Temperature Range:

SXR 8 and 10 and SXRL 8

- c: 40 °C to 50 °C (max. short term temperature + 50 °C and max long term temperature + 30 °C)
- b: 40 °C to 80 °C (max. short term temperature + 80 °C and max long term temperature + 50 °C)

SXRL 10 and 14

- c: 20 °C to 50 °C (max. short term temperature + 50 °C and max long term temperature + 30 °C)
- b: 20 °C to 80 °C (max. short term temperature + 80 °C and max long term temperature + 50 °C)

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (zinc coated steel, stainless steel).
- The specific screw made of galvanised steel or galvanised steel with an additional Duplex-coating may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e.g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).

 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are to be designed in accordance with the ETAG 020, Annex C under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the nature
 and strength of the base materials and the dimensions of the anchorage members as well as of the relevant
 tolerances. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple use for non-structural application, according to ETAG 020, Edition March 2012.

Installation:

- · Hole drilling by the drilling method according to Annex C3 C20 for use categories "b", "c" and "d".
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from SXR 8/10, SXRL 8 and SXRL 14: -5 °C to + 40 °C SXRL 10: -20 °C to + 40 °C
- Exposure to UV due to solar radiation of the not protected anchor ≤ 6 weeks.

fischer frame fixing SXR / SXRL	
Intended use Specifications	Annex B 1

Table B2.1: Installation parameters

Anchor type				SXR 8	SXRL 8	SXR 10	SXRL 10	SXRL 14
Drill hole diameter	d_0	=	[mm]	8	8	10	10	14
Cutting diameter of drill bit	$\mathbf{d}_{\mathrm{cut}}$	\leq	[mm]	8,45	8,45	10,45	10,45	14,45
		\geq	[mm]	50	50	50	50	-
Overall plastic anchor embedment depth in the base material 1) 2)	h _{nom2}	\geq	[mm]	-	70	1	70	70
in the base material	h _{nom3}	\geq	[mm]	-	90	-	90	90
	h _{1,1}	\geq	[mm]	60	60	60	60	-
Depth of drill hole to deepest point 1)	h _{1,2}	\geq	[mm]	-	80	1	80	85
	h _{1,3}	\geq	[mm]	-	100	-	100	105
Diameter of clearance hole in the fixture	d _f	\leq	[mm]	8,5	9,5	10,5/12,5 ³⁾	10,5/12,5 ³⁾	15,4

See Annex A1.

Table B2.2: Assignment of h_{nom} , I_d and t_{fix} for use in thin concrete slabs (e.g. weather resistant shells of external wall panels) and pre-stressed concrete core slabs

Anchor type	SXR 10 / SXRL 10					
		l _d	h _{nom} ≥	50 mm		
Use category "a"	SXR	SXRL	t _{fix, min}	t _{fix, max}		
	52	-	1	2		
Marking of h _{nom}	60	-	1	10		
10×80	80	80	21	30		
	100	100	41	50		
$h_{\text{nom}} \rightarrow t_{\text{fix}}$	120	120	61	70		
■ I _d I	140	140	81	90		
	160	160	101	110		
Marking of h _{nom}	180	180	121	130		
(botton ser NVIII.	200	200	141	150		
	230	230	171	180		
h_{nom} t_{fix}	260	260	201	210		
l _d	-	290	231	240		
l ← ''a	[mm]					

Table B2.3: Installation parameters for use in pre-stressed hollow concrete core slabs

Anchor type	SXRL 10					
a, > 50	Mirror thickness	d _b	2	[mm]	30	
P P	Overall plastic anchor embedment depth in the base material	h _{nom}		[mm]	50 to 59	

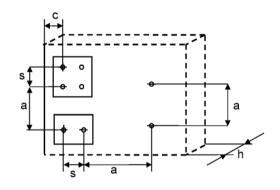
fischer frame fixing SXR / SXRL	
Intended use Installation parameters, parameters for use in thin skins (weather resistant concrete skins of external wall panels) and pre-stressed hollow concrete core slabs	Annex B 2

For hollow and perforated masonry: If the embedment depth is higher than h_{nom} given in the Table B2.1, job site tests have to be carried out according to ETAG 020, Annex B.

See Table C2.1.

Table B3.1: Minimum thickness of member, edge distance and spacing in concrete

Anchor Type	h _{nom} ≥ [mm]	Concrete Strength class	Min. thickness of member h _{min}	Characteristic edge distance	Characteristic spacing s _{cr,N}	Min. spacing and edge distances ¹⁾
	[]		[mm]	[mm]	[mm]	
		≥ C16/20		50	65	$ s_{min} = 50 \text{ for } c \ge 50$ $ c_{min} = 50 \text{ for } s \ge 50$
SXR 8	50	C12/15	100	70	70	$s_{min} = 70 \text{ for } c \ge 70$ $c_{min} = 70 \text{ for } s \ge 70$
	50	≥ C16/20	00	60	75	$\begin{array}{llllllllllllllllllllllllllllllllllll$
SXRL 8	50	C12/15	80	85	90	$\begin{array}{llllllllllllllllllllllllllllllllllll$
SARL 6	70	≥ C16/20	100	60	90	$ c_{min} = c_{$
	70	C12/15	100	85	105	$ c_{min} = 85 \text{ for } c \ge 85$ $ c_{min} = 85 \text{ for } s \ge 85$
OVD 40	50	≥ C16/20	100 ⁴⁾	100	90	$ s_{min} = 50 \text{ for } c \ge 150$ $ c_{min} = 60 \text{ for } s \ge 70$
SXR 10	50	C12/15	100 7	140	100	$\begin{vmatrix} s_{min} = 70 & for & c \ge 210 \\ c_{min} = 85 & for & s \ge 100 \end{vmatrix}$
		≥ C16/20		100	105	$s_{min} = 50 \text{ for } c \ge 100$ $c_{min} = 50 \text{ for } s \ge 125$
0VD: 40	50	C12/15	1004)	140	120	$s_{min} = 70 \text{ for } c \ge 140$ $c_{min} = 70 \text{ for } s \ge 175$
SXRL 10	2)	≥ C16/20	100 ⁴⁾	100	105	$s_{min} = 50 \text{ for } c \ge 100$ $c_{min} = 50 \text{ for } s \ge 125$
	70 ²⁾	C12/15		140	120	$s_{min} = 70 \text{ for } c \ge 140$ $c_{min} = 70 \text{ for } s \ge 175$
OVEL 44	703)	≥ C16/20	440	100	120	$s_{min} = 60 \text{ for } c \ge 100$ $c_{min} = 60 \text{ for } s \ge 125$
SXRL 14	70 ³⁾	C12/15	110	140	135	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


Intermediate values by linear interpolation.

Values valid for reinforced concrete.

Please note: Values for non-reinforced concrete are $h_{min} = 110$ mm and $c_{min} = s_{min} = 80$ mm for concrete $\geq C16/20$ and $c_{min} = s_{min} = 110$ mm for C12/15.

Fixing points with a spacing a $\leq s_{cr,N}$ are considered as a group with a max. characteristic resistance $N_{Rk,p}$ acc. to Table C1.3. For a spacing a $> s_{cr,N}$ the anchors are considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ acc. to Table C1.3.

Scheme of distance and spacing in concrete

fischer frame fixing SXR / SXRL	
Intended use Edge distances and spacings for use in concrete	Annex B 3

³⁾ Please note: Values for non-reinforced concrete are h_{min} = 110 mm and c_{min} = 100 and s_{min} = 80 mm for concrete ≥ C16/20 and c_{min} = 140 and s_{min} = 110 mm for C12/15.

Also valid for thin concrete slabs $h \ge 40$ mm, $h_{nom} = 50$ mm to 59 mm

Table B4.1: Minimum thickness of member, edge distance and spacing in masonry

Anchor type			SXR 8	SXRL 8	SXR 10	SXRL 10	SXRL 14
Minimum thickness of member	h_{min}	[mm]	100	115	100	110	115
Single anchor							
Minimum spacing	\mathbf{a}_{min}	[mm]	250	250	250	250	250
Minimum edge distance	C _{min}	[mm]	100	100	100	100	100
Anchor group							
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	100	100	100	100	100
Minimum spacing parallel to free edge	S _{2,min}	[mm]	100	100	100	100	100
Minimum edge distance	C _{min}	[mm]	100	100	100	100	100
Distance between anchor groups and / or single anchors	а	[mm]			250		

Scheme of distance and spacing in masonry and aerated concrete AAC

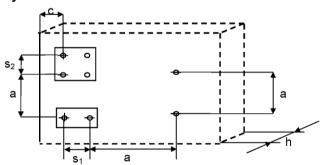
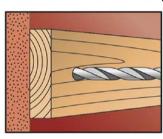
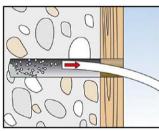


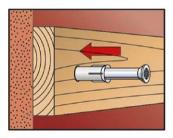
Table B4.2: Minimum thickness of member, edge distance and spacing in aerated concrete AAC

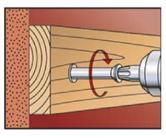
Anchor type			SXRL	. 8	SXR 10	SXRI	_ 10		SXR	L 14	
Compressive strength	f _b	[N/mm²]	≥ 2 to < 6	≥ 6	≥ 2	≥ :	2	≥ 2 to < 4		≥ 4	
Nominal embedment depth	h _{nom} 2	≥ [mm]	70 and	90	50	70	90	70	90	70	90
Minimum thickness of member	h_{min}	[mm]	175		100	100	120	17	' 5	30	00
Single anchor											
Minimum spacing	a _{min}	[mm]	250	250	250	25	0		25	50	
Minimum edge distance	C _{min}	[mm]	60	80	100	12	0	80		100	120
Anchor group											
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	80	110	200	100 /	120 ¹⁾	8	0	80	100
Minimum spacing parallel to free edge	S _{2,min}	[mm]	80	110	400 ²⁾	100 /	120 ¹⁾	80	100	80	125
Minimum edge distance	C _{min}	[mm]	90	110	100	12	0	12	20	120	150
Distance between anchor groups and / or single anchors	а	[mm]				250 ²⁾					

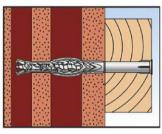

⁾ Valid for AAC ≥ 600 kg/m³

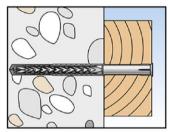
²⁾ For SXR 10 a ≥ 400 mm


fischer frame fixing SXR / SXRL	
Intended use Edge distances and spacing for use in masonry and in autoclaved aerated concrete AAC	Annex B 4


Installation instructions (the following pictures show fixing through timber)


1. Drill the bore hole acc. to Table B2.1 using the drill method described in the corresponding Annex C.


2. Use category "a", "b", "d": Remove dust from borehole.


3. Insert anchor (screw and plug) by using a hammer until the collar of the plastic sleeve is flush with the surface of the fixture.

4. The screw is screwed-in until the head of the screw touches the sleeve. The anchor is correctly mounted, when the head of the screw fits tight on the surface and cannot be screwed-in any further.

5. Correctly installed anchor in hollow masonry.

6. Correctly installed anchor in concrete.

fischer frame fixing SXR / SXRL

Intended use Installation instructions

Annex B 5

Z14599.17

Table C1.1: Characteristic bending resistance of the screw

Anchor type		SXR 8 /	SXRL 8	SXR 10 /	SXRL 10		steel steel		
Material		galvanised steel	stainless steel	galvanised steel	stainless steel	galvanised steel		0	
Overall plastic anchor depth in the base mat		it				h _{nom2} 70mm	h _{nom3} 90mm	h _{nom2} 70mm	h _{nom3} 90mm
Characteristic bending resistance	∕I _{Rk,s} [Nm]	12,4	12,0	20,6 23,6 ²⁾	20,6	48,7	62,5	47,0	60,5
Partial safety factor γ	1) Ms	1,25	1,29	1,29	1,29	1,	25	1,2	! 9

In absence of other national regulations.

Table C1.2: Characteristic resistance of the screw

Failure of expansion ele	ment (enecial	SXR 8/	SXRL 8	SXR 10 / 9	SXRL 10	SXRL 14		
screw)	galvanised steel	stainless steel	galvanised steel	stainless steel	galvanised steel	stainless steel		
Characteristic tension resistance	N _{Rk,s} [kN]	14,8	14,3	21,7 24,9 ²⁾	21,7	43,4	42,0	
Partial safety factor	γ _{Ms} 1)	1,50	1,45	1,55	1,55	1,50	1,55	
Characteristic shear resistance	V _{Rk,s} [kN]	7,4	7,1	10,8 12,4 ²⁾	10,8	21,7	21,0	
Partial safety factor	γ _{Ms} 1)	1,25	1,29	1,29	1,29	1,25	1,29	

In absence of other national regulations.

Table C1.3: Characteristic resistance for use in concrete (use cat. "a")

Pull-out failure (pla	stic sl	eeve)	SXR 8	SXF	RL 8	SXR 10	SXRL	_ 10	SXRL 14
Embedment depth	50	50	70	50	50	70	70			
Concrete ≥ C12/15										
Characteristic resistance 30/50 °C	$N_{Rk,p}$	[kN]		3,0	4,0	5,0	5,0	5,5	6,5	8,5
Characteristic resistance 50/80 °C	N _{Rk,p}	[kN]		2,5 3,0 ²⁾	4,0	5,0	4,5	5,0	6,5	8,5
Concrete ≥ C12/15	(e.g. w	<i>r</i> eath	er resistant s	hells of ex	ternal w	all pane	els)			
Characteristic resistance 30/50 °C	N _{Rk}	[kN]	h ≥ 40 mm	-	-	-	3,5	2,5 3,0 ²⁾	-	-
Characteristic resistance 50/80 °C	N _{Rk}	[kN]	h ≥ 40 mm	-	-	-	3,0	2,5 3,0 ²⁾	-	-
Concrete ≥ C45/55	in pre	stres	sed concrete	core slab	s					
Characteristic			d _b ≥ 30 mm	-	-	-		3,5 4,0 ³⁾	-	-
resistance 50/80 °C	N _{Rk}	[kN]	d _b ≥ 40 mm					5,5 6,0 ³⁾	1	-
Partial safety factor			γ _{Mc} 1)				1,8			

In absence of other national regulations.

only valid for temperature range 30 / 50 °C

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance and characteristic bending resistance of the screw Characteristic resistance for use in concrete	Annex C 1

Only for SXRL 10: "High load" screw version on request only for countersunk screws – head marking is 🍑

Only for SXRL 10: "High load" screw version on request only for countersunk screws – head marking is 🐽

Value corresponds to concrete class ≥ C16/20.

Table C2.1: Displacements¹⁾ under tension and shear loading in concrete and masonry

			Tension load ²⁾		Shear load ²⁾	
Anchor type	h _{nom} [mm]	F [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	δ _{vo} [mm]	δ _{v∞} [mm]
SXR 8	50	1,2	0,65	1,30	1,02	1,53
SXRL 8	50	1,6	0,56	1,12	2,00	3,00
SARL 0	70	2,0	0,64	1,28	2,30	3,45
SXR 10	50	2,0	1,29	2,58	1,15/3,05 ³⁾	1,74/4,58 ³⁾
CVDL 40	50	2,2	0,58	1,16	1,96	2,94
SXRL 10 70		2,6	1,67	3,34	1,15/3,05 ³⁾	1,74/4,58 ³⁾
SXRL 14	70	3,40	0,39	0,63	2,79	4,19

Valid for all ranges of temperatures.

Table C2.2: Displacements¹⁾ under tension und shear loading in autoclaved aerated concrete AAC

				Tensio	າ load ²⁾	S	hear load ²⁾
Anchor type	f _b [N/mm²]	h _{nom} [mm]	F [kN]	δ _{NO} [mm]	δ _{Ν∞} [mm]	δ _{vo} [mm]	δ _{v∞} [mm]
SXRL 8	≥ 2	70/90	0,14/0,21	0,45/0,55	0,90/1,10	0,28/0,42	0,42/0,63
SARL 0	≥ 6	70/90	1,07	0,73/0,80	1,46/1,60	2,14	3,21
SXR 10	≥ 2	50	0,32	0,03	0,06	0,21	0,31
CVDL 10	≥ 2	70/90	0,32	0,23	0,46	0,64	0,96
SXRL 10	≥ 6	70/90	1,43	0,65	1,30	2,86	4,29
	≥ 2	70/90	0,32/0,43	0,19/0,25	0,38/0,50	0,64/0,86	0,96/1,29
EVDI 14	≥ 3	70/90	0,60/0,77	0,23/0,31	0,45/0,63	1,19/1,54	1,79/2,31
SXRL 14	≥ 4	70/90	0,88/1,11	0,26/0,38	0,53/0,76	1,75/2,22	2,62/3,33
	≥ 6	70/90	1,43/1,79	0,34/0,51	0,68/1,02	2,86/3,58	4,29/5,37

Valid for all ranges of temperatures.

Table C2.3: Values under fire exposure in concrete C20/25 to C50/60 in any load direction, no permanent centric tension load and without lever arm

Anchor type	Fire resistance class	F ¹⁾
SXR 10 / SXRL 10 / SXRL 14	R 90	≤ 0,8 kN

 $F_{Rk}/(\gamma_{m} \chi \gamma_{F})$

fischer frame fixing SXR / SXRL	
Performances Displacements under tension and shear loading in concrete, masonry and aerated concrete Characteristic values under fire exposure in concrete	Annex C 2

Intermediate values by linear interpolation.

Valid for diameter in the clearance hole ≤ 12,5 mm (see Table B2.1).

²⁾ Intermediate values by linear interpolation.

Table C3.1: Characteristic resistance F_{Rk} in [kN] in solid masonry (use category "b")

Base material [Supplier Title]	Min. com- pressive			CI	naracter	istic resist 50/80°0		[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
[mm]	[N/mm²] / bulk density					h _{nom} [mr	n]			
and drilling method	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90
Clay brick Mz, acc. to EN 771-1:2011 e.g. Schlagmann	20/1,8	3,0	•	•		2,0 4,0 ⁴⁾ 4,5 ⁶⁾	-	•		
3 DF (240x175x113) by hammer drilling	10/1,8	2,0	(#	₩.	Œ	1,5 3,0 ⁴⁾	(4		¥	-
Clay brick Mz, acc. to EN 771-1:2011 e.g. Schlagmann	36/1,8	2,5	3,0	4,0 4,5 ³⁾	8)	5,0	3,5	4,0 5,5 ³⁾	4,0 6,0 ⁴⁾ 7,0 ⁶⁾	8)
e.g. Ebersdobler NF (240x115x71) by hammer drilling	20/1,8	2,5	3,0	4,0 4,5 ³⁾	8)	3,0 3,5 ²⁾	3,5	4,0 5,5 ³⁾	4,0 6,0 ⁴⁾ 7,0 ⁶⁾	8)
	12/1,8	2,0	2,0	2,5	8)	2,0	2,0	4,0 5,5 ³⁾	3,0 4,5 ⁴⁾ 5,0 ⁶⁾	8)
	10/1,8	2,0	2,0	2,5	8)	2,0	ı	3,5 4,5 ³⁾	3,0 4,5 ⁴⁾ 5,0 ⁶⁾	8)
Clay brick Mz, acc. to EN 771-1:2011 e.g.Wienerberger, DK	28/1,8	3,0	2,5	3,0 3,5 ²⁾	8)	3,0	3,0 4,5 ³⁾ 5,0 ⁵⁾	5,5 6,5 ³⁾	¥	-
DF (240x115x52) by hammer drilling	20/1,8	2,0	2,5	3,0 3,5 ²⁾	8)	2,0	3,0 4,5 ³⁾ 5,0 ⁵⁾	4,0 4,5 ³⁾		-
	16/1,8	1,5	2,5	3,0 3,5 ²⁾	8)	1,5	3,0 4,5 ³⁾ 5,0 ⁵⁾	3,0 3,5 ³⁾		•
	12/1,8	1,5	1,5 2,0 ²⁾	2,0 2,5 ²⁾	8)	1,2	2,5 3,5 ³⁾	2,5 3,0 ³⁾	. ■k	:
	10/1,8	1,5	1,2 1,5 ²⁾	8)	8)	1,2		2,5 3,0 ³⁾	ī	i-
Partial safety factor	γ _{Mm} 1)					2,5				

In absence of other national regulations.

Values of lower h_{nom} can also be taken for next higher h_{nom}.

fischer frame fixing SXR / SXRL	
Performances	Annex C 3
Characteristic resistance for use in solid masonry	

Only valid for temperature range 30/50° C.

³⁾ Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.

⁴⁾ Only valid for edge distance c ≥ 200 mm; intermediate values by linear interpolation.

⁵⁾ Only valid for edge distance c ≥ 150 mm for temperature range 30/50° C; intermediate values by linear interpolation.

⁶⁾ Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.

Base material [Supplier Title]	Min. com- pressive			CI	naracter	istic resist 50/80°0		[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
[mm]	[N/mm²] / bulk density					h _{nom} [mn	n]			
and drilling method	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90
Calcium silicate solid brick KS,	36/2,0	•			•	5,0	3,5 4,0 ³⁾	8)	-	1-
acc. to EN 771-2:2011 e.g. KS Wemding NF (240x115x71)	20/2,0	•	•	í	•	3,0 3,5 ²⁾	3,5 4,0 ³⁾	8)	-	:-
by hammer drilling	20/1,8	2,5	2,5	3,0	8)	2,5 4,0 ⁴⁾	-	3,5	4,5 5,0 ⁴⁾ 6,0 ⁶⁾	8)
	10/2,0	•	4,	*		2,0	2,0 2,5 ³⁾	8)	-	æ
	10/1,8	2,0	2,0	2,0	8)	1,5	1	2,5	3,0 3,5 ⁴⁾ 4,0 ⁶⁾	8)
Calcium silicate solid	28/2,0	3,0		•	-	5,0	•		·	
brick KS , acc. to EN 771-2:2011	20/2,0	3,0	4:	•	•	4,5		•		-
e.g. KS Wemding 12 DF (495x175x240) by hammer drilling	20/1,8	•	•	*	•	- 1	•	6,5 8,5 ⁴⁾	4,0 11,0 ⁴⁾ 11,5 ⁶⁾	8)
•	16/1,8	•	1	9	-		4	6,5 8,5 ⁴⁾	4,0 11,0 ⁴⁾ 11,5 ⁶⁾	8)
	12/1,8	T.	1	36		3	ı	6,5 8,5 ⁴⁾	4,0 11,0 ⁴⁾ 11,5 ⁶⁾	8)
	10/2,0	2,5	•	1	•	3,0	•	-		.=
	10/1,8	•	•	î	•	- s	•	5,5 7,0 ⁴⁾	3,5 9,0 ⁴⁾ 9,5 ⁶⁾	8)
	8/1,8	-	-	-	-		-	4,0 5,5 ⁴⁾	2,5 7,5 ⁴⁾	8)
Partial safety factor	$\gamma_{Mm}^{-1)}$					2,5				

-) In absence of other national regulations.
- ²⁾ Only valid for temperature range 30/50° C.
- Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.
- ⁴⁾ Only valid for edge distance c ≥ 200 mm; intermediate values by linear interpolation.
- ⁵⁾ Only valid for edge distance c ≥ 150 mm for temperature range 30/50° C; intermediate values by linear interpolation.
- 6) Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.
- Values of lower h_{nom} can also be taken for next higher h_{nom}.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in solid masonry	Annex C 4

Base material [Supplier Title]	Min. com- pressive			CI	naracter	istic resist 50/80°C		[kN]		
Geometry, DF	strength f _b	SXR 8		SXRL 8		SXR 10			SXRL 14	
or nom. size (L x W x H) [mm]	[N/mm²] /			OXIVE 0		h _{nom} [mn		L 10	OXINE	. 17
and drilling method	bulk density ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 9
Calcium silicate solid brick KS, acc. to EN 771-2:2011 e.g. KS Wemding	16/2,0		3,0 4,5 ³⁾ 5,0 ⁶⁾	3,5 5,0 ³⁾ 6,0 ⁴⁾ 6,5 ⁶⁾	8)	-	3,5 5,0 ³⁾ 6,0 ⁴⁾ 6,5 ⁶⁾	8)	-	-
8 DF (495x115x240) by hammer drilling	12/2,0	•	2,5 3,0 ³⁾ 3,5 ⁵⁾	2,5 4,0 ³⁾ 4,5 ⁴⁾ 5,0 ⁶⁾	8)	•	2,5 4,0 ³⁾ 4,5 ⁴⁾ 5,0 ⁶⁾	8)	-	-
Lightweight solid brick Vbl, acc. to EN 771-3:2011	4/1,4	,	1	1	-	0,75		2,5	1	-
e.g. KLB 2 DF (240x115x113)	2/1,4	•				0,4	1	1,2	-	-
by hammer drilling ´	2/1,2	0,9	0,4 0,5 ²⁾	0,9 1,2 ²⁾	8)	0,75 0,9 ³⁾	0,4	8)	0,9 1,2 ²⁾	8)
Lightweight solid brick Vbl,	12/1,8	2,5	-	-	-		-	3,0 4,5 ³⁾	-	-
acc. to EN 771-3:2011 e.g. KLB	10/1,8	2,5	•	-	-	-	-	2,5 3,5 ³⁾	-	-
8 DF (490x240x115) by hammer drilling	8/1,8	2,5		-	-	-	-	2,0 3,0 ³⁾	-	-
	8/1,6	-	•	•	-	3,0	-	-	-	-
	6/1,8	2,0	•	•	•	-	1	1,5 2,0 ³⁾	-	-
	6/1,6	-	•	•	-	2,0	-	-	-	-
	4/1,8	1,2	1	•	-	-	-	0,9 1,5 ³⁾	-	-
	2/1,2	-	•	•	-	1,2	-	-	-	-
	2/1,0	1,2		-	-	-	-		-	١.

In absence of other national regulations.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in solid masonry	Annex C 5

²⁾ Only valid for temperature range 30/50° C.

³⁾ Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.

⁴⁾ Only valid for edge distance c ≥ 200 mm; intermediate values by linear interpolation.

⁵⁾ Only valid for edge distance c ≥ 150 mm for temperature range 30/50° C; intermediate values by linear interpolation.

⁶⁾ Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.

Values of lower h_{nom} can also be taken for next higher h_{nom}.

Table C6.1: Characteristic resistance F_{Rk} in [kN] in solid masonry (use category "b")

Base material [Supplier Title]	Min. com- pressive			CI	naracter	istic resist 50/80°0	ance F _{RK}	[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b	SXR 8		SXRL 8		SXR 10		L 10	SXRL	14
[mm]	[N/mm²] / bulk density					h _{nom} [mn	n]			
and drilling method	ρ [kg/dm ³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90
Lightweight solid brick Vbl, acc. to EN 771-3:2011	10/1,6		2,0 2,5 ²⁾	3,0 4,0 ⁵⁾	8)	2,5	3,0 3,5 ⁵⁾	7,5	3,5 6,0 ⁴⁾ 7,0 ⁶⁾	8)
e.g. KLB 8 DF (245x240x240) by hammer drilling	8/1,6	•	1,5 2,0 ²⁾	2,5 3,5 ⁵⁾	8)	2,5	2,5 3,0 ⁵⁾	6,0	3,0 5,0 ⁴⁾ 6,0 ⁶⁾	8)
	6/1,6	•	1,2 1,5 ²⁾	2,0 2,5 ⁵⁾	8)	2,5	2,0	4,5	2,0 3,5 ⁴⁾ 4,5 ⁶⁾	8)
	6/1,4	0,9	•	-	-	-	-	-	-	-
	4/1,6	•	0,75 0,9 ²⁾	1,2 1,5 ⁵⁾	8)	0,9	1,2 1,5 ⁵⁾	3,0	1,5 2,5 ⁴⁾ 3,0 ⁶⁾	8)
	4/1,4	0,6 0,75 ²⁾	1	1		•		,	1	-
	2/1,6	•	0,4 0,5 ²⁾	0,6 0,9 ⁵⁾	8)	0,5	0,6	1,5	-	-
Lightweight solid brick VbI, acc. to EN 771-3:2011, e.g. Liapor Super-K 16 DF (500x240x248) by hammer drilling	2/0,8		-	-	-	-	•	0,5	-	-
Lightweight solid brick Vbl,	6/1,4	-	•	•	-	2,0 2,5 ⁴⁾	-	2,0 3,0 ³⁾	-	-
acc. to EN 771-3:2011, e.g. Tarmac (440x100x215) by hammer drilling	4/1,4		1	•	•	1,2 1,5 ⁴⁾	•	1,2 2,0 ³⁾		-
Partial safety factor	1) γ _{Μm}					2,5				

In absence of other national regulations.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in solid masonry	Annex C 6

²⁾ Only valid for temperature range 30/50° C.

³⁾ Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.

⁴⁾ Only valid for edge distance c ≥ 200 mm; intermediate values by linear interpolation.

⁵⁾ Only valid for edge distance c ≥ 150 mm for temperature range 30/50° C; intermediate values by linear interpolation.

⁶⁾ Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.

Values of lower h_{nom} can also be taken for next higher h_{nom}.

Table C7.1: Characteristic resistance F_{Rk} in [kN] in solid masonry (use category "b")

Base material [Supplier Title]	Min. com- pressive	Characteristic resistance F _{RK} [kN] 50/80°C											
Geometry, DF or nom. size (L x W x H)	strength f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL 14				
[mm]	[N/mm ²] / bulk density		h _{nom} [mm]										
and drilling method	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90			
Solid brick normal	20/1,8	2,5		-	-	4,5	-	-	-	-			
concrete Vbn, acc. to EN 771-3:2011	16/1,8	2,5		-	-	3,5	-	-	-	-			
e.g. Adolf Blatt	12/1,8	2,5	-	-	-	3,0	-	-	-	-			
(240x245x240) by hammer drilling	10/1,8	1,5	-	-	-	3,0	-	-	-	-			
by naminer drilling	8/1,8	1,5	-	-	-	-	-	-	-	-			
	4/1,8	0,75	-	-	-	-	-	-	-	-			
Solid brick normal concrete Vbn, acc. to	16/1,8	1	1	-	1	4,0 4,5 ²⁾	1	5,5	-	-			
EN 771-3:2011 e.g.Tarmac GB (440x100x215) by hammer drilling	10/1,8	•		-		2,5 3,0 ²⁾	-	3,5	-	-			
Partial safety factor	1) γ _{Mm}					2,5							

Footnotes see C7.2

Table C7.2: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive			CI	naracter	istic resist 50/80°C		[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
[mm]	bulk density					h _{nom} [mn	า]			
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Perforated clay brick HLz Form B, acc. to	20/1,2	1,2	1	1	1	2,5 3,0 ⁵⁾	-	2,0	ı	ı
EN 771-1:2011 e.g. Wienerberger	20/1,0	•	•	•	•	2,0	-	-	-	-
	12/1,2			1	-	-	-	1,2		
\$\\ \tau_{\\ \tau_{\tau_{\\tau_{\tau_{\\ \tau_{\tau_{\\ \tau_{\\ \tau_{\\ \tau_{\\ \tau_{\\\ \tau_{\\ \tau_{\\ \tau_{\\ \\ \tau_{\\ \\ \tau_{\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	10/1,2	-	•	•	•	1,5 2,0 ²⁾	-			-
240 2 DF (240×115×113)	10/1,0	-	ı	-	-	1,2	-	-	-	-
by rotary drilling	8/1,2	0,5	•	•	•	-	-	-	•	-
Partial safety factor	1) γ _{Mm}					2,5				

In absence of other national regulations.

Only valid for edge distance c ≥ 150 mm at temperature range 30/50° C; intermediate values by linear interpolation.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in solid masonry and in hollow or perforated masonry	Annex C 7

Only valid for temperature range 30/50° C.

Table C8.1: Characteristic resistance	F _{Rk} in [kN] in hollow or perforated masonry	(use category "c")
---------------------------------------	---	--------------------

Base material [Supplier Title]	Min. com- pressive		Characteristic resistance F _{RK} [kN] 50/80°C									
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8 SXRL 8 ⁷⁾ SXR 10 SXRL 10						L 10	SXRL 14 ⁷⁾			
[mm] and drilling method	bulk density	h _{nom} [mm]										
and drilling method	ρ [kg/dm ³]	50	50	70	90	50	50	70	70	90		
Perforated clay brick HLz	28/1,2		1,2 1,5 ²⁾	1,5 2,0 ²⁾	1,5 2,0 ²⁾			2,0	×	-		
acc. to EN 771-1:2011 e.g. Wienerberger	20/1,2		0,9 1,2 ²⁾	0,9 1,2 ²⁾	1,2 1,5 ²⁾	4		1,2	•	-		
© 000000000	12/1,0	0,6	•	-	-	0,9	<u></u>	0,75	Ħ,			
8 00000000 5 5 5 240	10/1,2	-	0,6	0,6 0,75 ²	0,6 0,9 ²⁾	-	y -	-	-			
2 DF (240x115x113)	10/1,0		•	=0		0,75	-	0,6	•	-		
by rotary drilling	8/1,0	0,4	•	•	-	0,6	i e	-	-	-		
Perforated clay brick VHLz acc. to EN 771-1:2011, e.g. Wienerberger NF (240x115x71) by rotary drilling	48/1,6		·	ï	•	-	-	-	4,5 5,0 ²⁾	4,5 5,0 ²		
	28/1,6	,	į	-			•	-	2,5 3,0 ²⁾	2,5 3,0 ²		
	20/1,6	•		•	ı		-	-	1,5 2,0 ²⁾	1,5 2,0 ²		
Perforated clay brick VHLz	48/1,6		2,5	2,5	1,5 2,0 ²⁾	2,5		4,5	-	-		
acc. to EN 771-1:2011, e.g. Wienerberger	36/1,6	-	2,0	2,0	1,2 1,5 ²⁾	2,0	i e	3,0	•	-		
	28/1,6		1,5	1,5	0,9 1,2 ²⁾	1,5		2,5	-	.=		
5 7 22	20/1,6	-	0,9	0,9	0,6 0,9 ²⁾	0,9	-	1,5	-	:=		
2 DF (240×115×113)	12/1,6	-	0,6	0,6	0,4 0,5 ²⁾	0,6	:=	0,9	-	n=		
by rotary drilling	10/1,6	-			-	-	:	0,9		-		
Partial safety factor	γ _{Mm} 1)					2,5						

In absence of other national regulations.

The lowest load of two consecutive embedment depths may be used for the intermediate embedment depths.

fischer frame fixing SXR / SXRL	
Performances	Annex C 8
Characteristic resistance for use in hollow or perforated masonry	

²⁾ Only valid for temperature range 30/50° C.

³⁾ Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.

⁴⁾ Only valid for edge distance c ≥ 200 mm; intermediate values by linear interpolation.

⁵⁾ Only valid for edge distance c ≥ 150 mm at temperature range 30/50° C; intermediate values by linear interpolation.

⁶⁾ Only valid for edge distance c ≥ 200 mm at temperature range 30/50° C; intermediate values by linear interpolation.

Table C9.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive	Characteristic resistance F _{RK} [kN] 50/80°C										
Geometry, DF or nom. size (L x W x H)	strength f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14		
[mm]	[N/mm²] / bulk density											
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90		
Perforated clay brick HLz acc. to EN 771 -1:2011+A1:2014, e.g. Wienerberger, BS	28/1,5	2,5	-	-	-	2,5	-	-	-	-		
9 8 -20 240	20/1,5	1,2 1,5 ²⁾	-	-		2,0	-	-		-		
DF (240x110x52) by hammer drilling	10/1,5	0,6 0,9 ²⁾	-	-	-	1,2	-	-	-	-		
Perforated clay brick HLz Form B, acc. to EN 771-1:2011 e.g. Schlagmann	8/0,9	0,9	-		-	-	-	-	-	-		
	6/0,9	0,6	-	-	-	•	-	-	-	-		
10 DF (260x240x440) by rotary drilling	4/0,9	0,4	-	-	-	-	-	-	-	-		
Perforated clay brick HLz acc. to EN 771-1:2011 e.g. Schlagmann Poroton T14 10 DF (300x240x240) by rotary drilling	6/0,7		-	-	-	0,3 0,4 ²⁾	-	0,5	-	-		
Partial safety factor	1)					2,5				Щ		

In absence of other national regulations.

fischer frame fixing SXR / SXRL	_
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 9

²⁾ Only valid for temperature range 30/50° C.

Table C10.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive			CI	naracter	istic resist 50/80°0		[kN]				
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8	SXR 8 SXRL 8 SXR 10 SXRL 10									
[mm]	bulk density		h _{nom} [mm]									
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90		
Perforated clay brick HLz Form B, acc. to EN 771-1:2011, e.g. Schlagmann	6/0,7	1,2	-	-	-	2,0	-	-	•	,-		
Planfüllziegel	4/0,7	0,75	,	ř	•	ı	·	•	•	-		
12 DF (380x240x240) by rotary drilling	2/0,7	0,4	-	7		-	,	•	×	-		
Perforated clay brick HLz acc. to EN 771-1:2011 e.g. Schlagmann 3 DF (240x175x113) by rotary drilling	12/1,0	1	- 1	1	1	-	1	ī	2,0	2,5		
	10/1,0	1	ji	ä	3	į	ì	ä	2,0	2,0		
	8/1,0	1	-	3	1	i	ı	ì	1,5	1,5		
	6/1,0	1	-	3	-	i	ı	ì	1,2	1,2		
Perforated clay brick HLz acc. to EN 771-1:2011, e.g. Schlagmann Poroton S11	8/0,8	-	۱-	-:	-	-	-	1,5	.■3	3 -		
Poroton S11 2 DF (365x250x240) by rotary drilling	6/0,8	Ž.	Œ	•	•	•	18	1,2	¥	-		
	4/0,8	•	25	•	-	4	*	0,75	*	-		
Partial safety factor	γ _{Mm} 1)					2,5						

In absence of other national regulations.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 10

Table C11.1: Characte	ristic resista	nce F _{Rk}	in [kN]	in hollo	w or pe	rforated	masonry	(use cate	gory "c")		
Base material [Supplier Title]	Min. com- pressive	Characteristic resistance F _{RK} [kN] 50/80°С										
Geometry, DF or nom. size (L x W x H)	SXR 8 SXRL 8 SXR 10 SXRL 10								SXRL 14			
[mm]	[N/mm²] / bulk density		h _{nom} [mm]									
and drilling method	ρ [kg/dm ³]	50	50	70	90	50	50	70	70	90		
Perforated clay brick HLz acc. to EN 771-1:2011 e.g. Schlagmann Poroton S10	6/0,7		•	¥		4	2	1,5		-		
10 DF (300x250x240) by rotary drilling	4/0,7	•		-	-		-	0,9	-	-		
Perforated clay brick HLz acc. to EN 771-1:2011 e.g. Schlagmann Poroton T8 12 DF (365x248x240) by rotary drilling	4/0,6		,	-				1,2	-	-		
	2/0,6		Ł	ï	,	ï	ı	0,6	T	×		
Perforated clay brick HLz acc. to EN 771-1:2011, e.g. Hörl & Hartmann Coriso WS 09	6/0,8	-	\ <u>-</u>		-		-	0,9	- :	ā. =		
(2) A VANDER	4/0,8	•	.=	*		•	-	0,6	¥	7		
(360x245x240) by rotary drilling	2/0,8 γ _{Mm} ¹⁾		•	=	=	•	; -	0,3	-	-		
						2,5				-		

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 11

Table C12.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive	Characteristic resistance F _{RK} [kN] 50/80°C										
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8 SXRL 8 ⁷⁾				SXR 10	SXR	L 10	SXRL 14 ⁷⁾			
[mm] and drilling method	bulk density	h _{nom} [mm]										
and drining method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90		
Perforated clay brick HLz acc. to EN 771-1:2011 e.g. Doppio Uni IT	20/0,9	•	1,2	0,9 1,5 ²⁾	1,5 2,0 ²⁾	•	•	1	-	-		
Wienerberger	16/0,9	•	0,9	0,9 1,2 ²⁾	1,2 1,5 ²⁾	•	•	1	ı	•		
(250x120x190) by rotary drilling	12/0,9		0,75	0,6 0,75 ²⁾	0,9 1,2 ²⁾	•			•	-		
Perforated clay brick HLz acc. to EN 771-1:2011, e.g. Imerys Gelimatic	6/0,6		-	-	-	0,6 0,75 ⁶⁾	-	1,5	-	-		
	4/0,6	•				•	-	0,9	-	-		
(500x200x270) by rotary drilling	2/0,6	•	•	•	1	•	•	0,5	1	-		
Perforated clay brick HLz acc. to EN 771-1:2011,	10/0,6			1	1	1,2	-	1,5		-		
e.g. Imerys Optibric	8/0,6	-	•	-	-	-	•	1,2	-	-		
	6/0,6	-	-	-	-	-	-	0,9	-	-		
(560x200x275) by rotary drilling	4/0,6	•	-	-	-	•	•	0,6		-		
Partial safety factor	1) γ _{Mm}					2,5						

In absence of other national regulations.

fischer frame fixing SXR / SXRL		
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 12	

Only valid for temperature range 30/50° C.

⁶⁾ Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.

⁷⁾ The lowest load of two consecutive embedment depths may be used for the intermediate embedment depths.

Table C13.1: Characte Base material	Min. com-					istic resist							
[Supplier Title]	pressive			J.		50/80°C							
Geometry, DF or nom. size (L x W x H)	strength f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14			
[mm]	[N/mm ²] / bulk density		h _{nom} [mm]										
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90			
Perforated clay brick HLz acc. to EN 771-1:2011, e.g. Bouyer Leroux BGV (570x200x315)	6/0,6		-	•	•	0,75 0,9 ³⁾ 1,2 ⁵⁾	ı	0,9	•	-			
Perforated clay brick HLz acc. to EN 771-1:2011, e.g. Wienerberger Porotherm 30 R (370x300x250) by rotary drilling	10/0,7		-	•	•	0,5 0,6 ³⁾	ı	•	•	-			
Perforated clay brick HLz acc. to EN 771-1:2011, e.g. Wienerberger Porotherm GF R20													

(560x200x275) by rotary drilling

Partial safety factor

3) Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.

10/0,7

γ_{Mm} 1)

⁵⁾ Only valid for edge distance c ≥ 150 mm for temperature range 30/50° C; intermediate values by linear interpolation.

0,6

 $0,75^{3}$

2,5

0,9

The lowest load of two consecutive embedment depths may be used for the intermediate embedment depths.

fischer frame fixing SXR / SXRL		
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 13	

In absence of other national regulations.

Table C14.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive			Cł	naracter	istic resista 50/80°C		[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	.14
[mm]	bulk density					h _{nom} [mn	۱]			
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Perforated clay brick HLz acc. to EN 771-1:2011, e.g. Terreal Calibric	8/0,7	•	•	•	•	0,6 0,75 ⁶⁾	-	0,9	•	-
8 2 500	6/0,7	•	•	•	-	-	-	0,75	-	-
(500x200x220) by rotary drilling	4/0,7		-	-	-		-	0,4	-	-
Perforated clay ceiling brick acc. to DIN 4159:2014-05, e.g. Hörl & Hartmann	10/0,7	•	•	-	-	-	-	2,0	-	-
ceiling block	8/0,7				-		-	1,5	-	-
(250x250x190) by rotary drilling	6/0,7		•	•		•	-	1,2	-	-
Perforated clay ceiling brick acc. to EN 15037-3:2011,	8/0,7			-	-	-	-	1,5	-	-
e.g. Hörl & Hartmann block for beam-and- block ceilings	6/0,7		-	-	-		-	1,2	-	-
	4/0,7		-	-	-	-	-	0,9	-	-
(520x250x180) by rotary drilling Partial safety factor	γ _{Mm} 1)					2,5				

In absence of other national regulations.

⁶⁾ Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 14

Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.

35 6

3 DF (240x175x113)

by hammer drilling

Hollow calcium

silicate brick KSL

acc. to EN 771-2:2011 e.g. KS Wemding

9 DF (380x175x240) by hammer drilling

Partial safety factor

238

1,2

1,0

0,75

3,5

2,0

2,0

3,5

2,0

2,5²⁾

1,5

 $2,0^{2)}$

4,0²⁾

1,5

2,02)

0,9

1,2²⁾

0,75

 $0,9^{2}$

Base material [Supplier Title]	Min. com- pressive		Characteristic resistance F _{RK} [kN] 50/80°C											
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8	SXR 8 SXRL 8 ⁷)	SXR 10	SXRL 10		SXRL 14 ⁷⁾					
[mm]	bulk density		h _{nom} [mm]											
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90				
Hollow calcium silicate brick KSL acc. to EN 771-2:2011 e.g. KS Wemding	20/1,4	1	2,0	2,5	2,5	-	1	1	-	7-				
	12/1,4	2,0	1,2	1,5	1,5	2,0 2,5 ²⁾	-	2,5	1,5 2,0 ²⁾	2,5				
	10/1,4	1,5	4	2	1	2,0	-	2,0	1,5	2,0				
	8/1,4	1,2	٠	-		1,5	-	1,5	1,2	1,5				
2 DF (240x115x113) by hammer drilling	6/1,4	0,9	18	-		•	2	~	0,9	1,2				
Hollow calcium silicate brick KSL acc. to EN 771-2:2011 e.g. KS Wemding	20/1,4	1,2 1,5 ²⁾	•		-	- 2	-	-	-	n=				
	16/1,4	0,9 1,2 ²⁾		•	-	*	-	2,0	-	19				
E Ø 45	12/1,4	0,75 0,9 ²⁾				-	-	1,5	-	-				

Table C15.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

0,6

 $0,75^{2}$

0,5

0,62)

0,6

 $0,75^{2}$

0,4

 $0,5^{2)}$

1,5

0,9

1,2²⁾

2,0²⁾

0,9

0,5

 $0,75^{2)}$

2,5

1,2²⁾

10/1,4

8/1,4

6/1,4

20/1,4

12/1,4

10/1,4

γ_{Mm} 1)

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 15

In absence of other national regulations.

Only valid for temperature range 30/50° C.

⁷⁾ The lowest load of two consecutive embedment depths may be used for the intermediate embedment depths.

Table C16.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive			CI	naracter	istic resist 50/80°0		[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
[mm]	bulk density					h _{nom} [mn	n]			
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Hollow calcium silicate brick KSL acc. to EN 771-2:2011 e.g. KS Wemding 5 DF (300x240x113) by hammer drilling	16/1,4	2,0	•	•	•	3,0 3,5 ⁵⁾	•	-	-	-
	12/1,4	1,5	-	-	-	-	-	-	-	-
	10/1,4	1,2	-	-	-	1,5	-	-	-	-
	8/1,4	0,9	•	-	-	-	-	-	-	-
	6/1,4	0,75 0,9 ²⁾	ı	ı	ı	-	ı	-	-	-
Hollow calcium silicate brick KSL acc. to EN 771-2:2011 e.g. KS Wemding, P10	6/1,2	1,2 1,5 ²⁾	,	1	-	1,5 2,0 ³⁾ 2,5 ⁵⁾	-	-	-	-
8 2 05 05	4/1,2	0,75 0,9 ²⁾	•	•	•	•	•	-	-	
(495x98x245) by hammer drilling	2/1,2	0,4 0,5 ²⁾	•	-	-	•	-	-	-	-
Hollow calcium silicate brick KSL acc. to EN 771-2:2011	12/1,4	•	1	1	1	-	1	2,0	-	-
e.g. KS Wemding 9 (250x238x240) by hammer drilling	10/1,4		•	-	-	-	-	1,5	-	-
	8/1,4		-	-	-		-	1,2	-	-
	6/1,4	-	-	-	-	-	-	0,9	-	-
Partial safety factor	γ _{Mm} 1)					2,5				

¹⁾ In absence of other national regulations.

⁵⁾ Only valid for edge distance c ≥ 150 mm for temperature range 30/50° C; intermediate values by linear interpolation.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 16

²⁾ Only valid for temperature range 30/50° C.

³⁾ Only valid for edge distance c ≥ 150 mm; intermediate values by linear interpolation.

Table C17.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive			Cł	naracteri	stic resist 50/80°C		[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8	Š	SXRL 8 ⁷)	SXR 10	SXRL 10 SXR			14 ⁷⁾
[mm] and drilling method	bulk density			_		h _{nom} [mn				
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Hollow brick light-weight concrete Hbl acc. to EN 771-3, e.g. KLB	2/1,2		•	•		1,5	-		-	-
(300x240x240) by hammer drilling										
Hollow brick light- weight concrete Hbl acc. to EN 771-3,	10/1,2	2,5	2,0	2,0 2,5 ²⁾	0,4 0,6 ²⁾		-	2,5	3,0	-
e.g. Roadstone masonry	8/1,2	2,0	1,5	1,5 2,0 ²⁾	0,3 0,5 ²⁾	2,5	-	2,0	2,5	-
210	6/1,2	1,5	1,2	1,2 1,5 ²⁾	0,3	2,0	-	1,5	2,0	-
35 440 (440×210×215)	4/1,2		•	•	•	-	-	0,9	1,2	-
by hammer drilling	2/1,2	-		-				0,5	0,6	-
Hollow brick light- weight concrete Hbl	6/0,8	-	1,5	2,5	1,5 2,0 ²⁾	-	2,5		-	-
acc. to EN 771-3, e.g. Knobel	4/0,8	•	0,9	1,5	0,9 1,2 ²⁾	-	1,5	•	-	-
55 500	2/0,8	•	0,5	0,75	0,5 0,6 ²⁾	-	0,75	-	-	-
(500x240x240) by rotary drilling	2/0,7	•	1,5 2,0 ²⁾	2,0 2,5 ²⁾	1,5 2,0 ²⁾	•	2,0 2,5 ²⁾	2,5	1,2 1,5 ²⁾	0,75
Partial safety factor	1) γ _{Μm}					2,5				

In absence of other national regulations.

The lowest load of two consecutive embedment depths may be used for the intermediate embedment depths.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 17

²⁾ Only valid for temperature range 30/50° C.

Table C18.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive			Cł	naracter	istic resist 50/80°C		[kN]		
Geometry, DF or nom. size (L x W x H)	strength f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
[mm]	[N/mm ²] / bulk density					h _{nom} [mn	n]			
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Hollow brick light-weight concrete Hbl acc. to EN 771-3, e.g. KLB	2/0,9		•	•			•	0,75	•	,
Hollow brick lightweight concrete Hbl acc. to EN 771-3:2011, e.g. KLB	6/1,0	1,5	-	•	-		•	-	-	-
Hollow brick light- weight concrete Hbl acc. to EN 771-3:2011, e.g. Sepa Parpaing	6/0,9		-	-	-	-	-	0,5	-	-
(500x200x200) by rotary drilling	4/0,9	0,3 0,4 ²⁾	-	-	-	0,9 1,2 ⁴⁾ 1,5 ⁶⁾	-	0,3	-	-
Partial safety factor	$\gamma_{Mm}^{-1)}$					2,5				

In absence of other national regulations.

Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 18

²⁾ Only valid for temperature range 30/50° C.

⁴⁾ Only valid for edge distance c ≥ 200 mm; intermediate values by linear interpolation.

Table C19.1: Characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c")

Base material [Supplier Title]	Min. com- pressive	Characteristic resistance F_{RK} [kN] 50/80°C											
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL 14				
[mm]	bulk density					h _{nom} [mn	۱]						
and drilling method	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90			
Hollow brick normal concrete Hbn acc. to EN 771-3, e.g. Adolf Blatt	6/1,6			•	,	2,5	,	2,0	-				
350	4/1,6	•	1	-	1	1,5	-	1,2	-	-			
(300x240x240) by hammer drilling	2/1,6		•	•	-	0,75		0,6	-	-			
Heat insulation brick WDB e.g. Gisoton (390x240x240) by hammer drilling	2/0,7	1	-	-	-	1,5	•	•	-	-			
Partial safety factor	γ _{Mm} 1)					2,5							

In absence of other national regulations.

Fischer frame fixing SXR / SXRL

Performances
Characteristic resistance for use in hollow or perforated masonry

Annex C 19

Only valid for temperature range 30/50° C.

⁴⁾ Only valid for edge distance c ≥ 200 mm; intermediate values by linear interpolation.

⁶⁾ Only valid for edge distance c ≥ 200 mm for temperature range 30/50° C; intermediate values by linear interpolation.

Table C20.1: Characteristic resistance F_{Rk} in [kN] in autoclaved aerated concrete (AAC), use category "d"

Base material [Supplier Title]	Min. com- pressive	Characteristic resistance F _{RK} [kN] 50/80°C											
Geometry, DF or nom. size (L x W x H)	strength f _b [N/mm²] /	SXR 8 SXRL 8			SXR 10	SXR	L 10	SXRL 14					
[mm]	bulk density		h _{nom} [mm]										
and drilling method	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 70	≥ 90	≥ 70	≥ 90			
Autoclaved aerated concrete, AAC acc. to EN 771-4:2011	≥ 6	•	14	1,5 3,0 ⁵⁾	2,0 3,0 ⁵⁾	0,75 0,9 ²⁾	2,0 2,5 ⁶⁾ 3,0 ⁴⁾	2,5 3,0 ⁶⁾ 4,0 ⁴⁾	4,0	5,0			
e.g. (500x120x300) e.g. (500x250x300) by hammer drilling	≥ 4	,		0,9 1,5 ⁵⁾	1,2 1,5 ⁵⁾	0,75 0,9 ²⁾	1,2 1,5 ⁶⁾ 2,0 ⁴⁾	1,5 2,5 ⁴⁾	2,5	3,0			
	≥ 3	•	•	0,6 0,9 ⁵⁾	0,9 1,2 ⁵⁾	0,4 ³⁾ 0,5 ²⁾³⁾	0,9 1,2 ⁴⁾	0,9 1,2 ⁶⁾ 1,5 ⁴⁾	1,5	2,0			
	≥ 2	*	T.	0,4	0,6	0,4 ³⁾ 0,5 ²⁾³⁾	0,5 0,75 ⁴⁾	0,6 0,9 ⁴⁾	0,9	1,2			
Partial safety factor	γ _{ΜΑΑ} ς 1)			,		2,0							

In absence of other national regulations.

Table C20.2: Assignment AAC hole punch type – anchor type (length) only for AAC f_b < 4N/mm² SXR 10

Hole punch only for SXR 10 h _{nom} = 50 mm in AAC f _b < 4N/mm ²					Anchor type
Туре	a ₁	a ₂	b	1	(length)
GBS 10 x 80	9	10	80	85	SXR 10 x 52 SXR 10 x 60 SXR 10 x 80
GBS 10 x 100			90	105	SXR 10 x 100
GBS 10 x 135				140	SXR 10 x 120
GBS 10 x 160				165	SXR 10 x 140 SXR 10 x 160
GBS 10 x 185				190	SXR 10 x 180
GBS 10 x 230				235	SXR 10 x 200 SXR 10 x 230

fischer frame fixing SXR / SXRL	
Performances Characteristic resistance for use in autoclaved aerated concrete	Annex C 20

²⁾ Only valid for temperature range 30/50° C.

For the fixing in autoclaved aerated concrete with a nominal compressive strength f_{ck} < 4 N/mm² the hole is made by using the accompanying AAC hole punch according Table C20.2.

⁴⁾ Values valid for member thickness h_{min} ≥ 175 mm.

⁵⁾ Only valid for edge distance c ≥ 120 mm.

Only valid for edge distance c ≥ 180 mm.