

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0142 of 9 December 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer drop-in anchor EA II Product family Deformation-controlled expansion anchor for multiple use to which the construction product belongs for non-structural applications in concrete fischerwerke GmbH & Co. KG Manufacturer Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND Manufacturing plant fischerwerke This European Technical Assessment 15 pages including 3 annexes contains This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 6: "Anchors issued in accordance with Regulation (EU) No 305/2011, on the basis of for multiple use for non-structural applications", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011. ETA-07/0142 issued on 28 July 2016 This version replaces

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-07/0142

Page 2 of 15 | 9 December 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 9 December 2016

European Technical Assessment ETA-07/0142 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer drop-in anchor EA II is an anchor made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex B 5.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding Mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 4

3.3 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading, displacements	See Annex C 1 to C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001-6, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

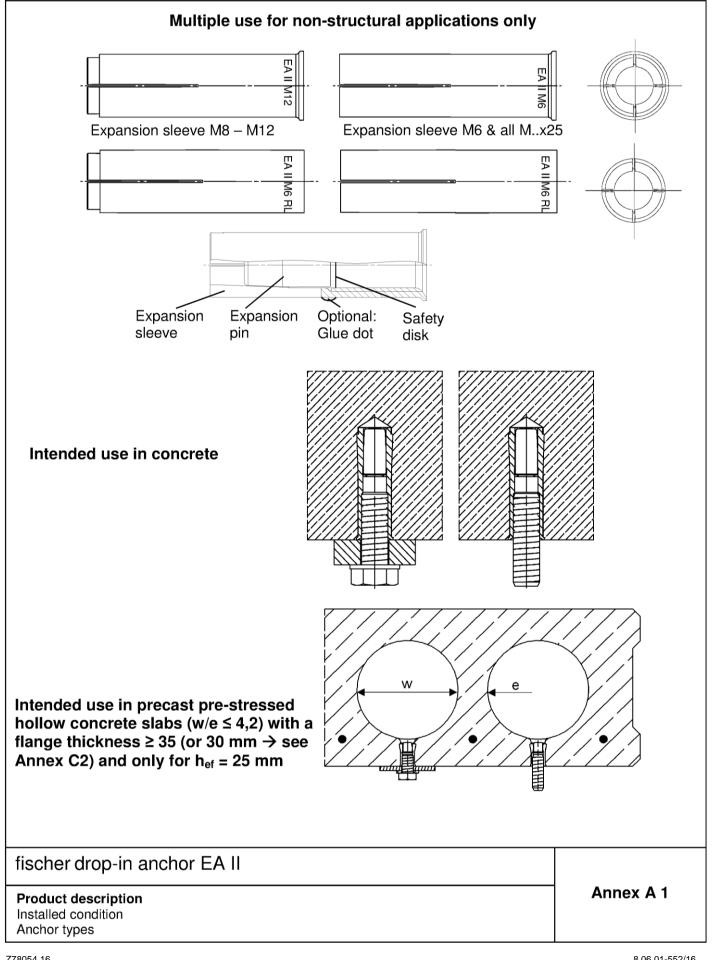
European Technical Assessment ETA-07/0142

Page 4 of 15 | 9 December 2016

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

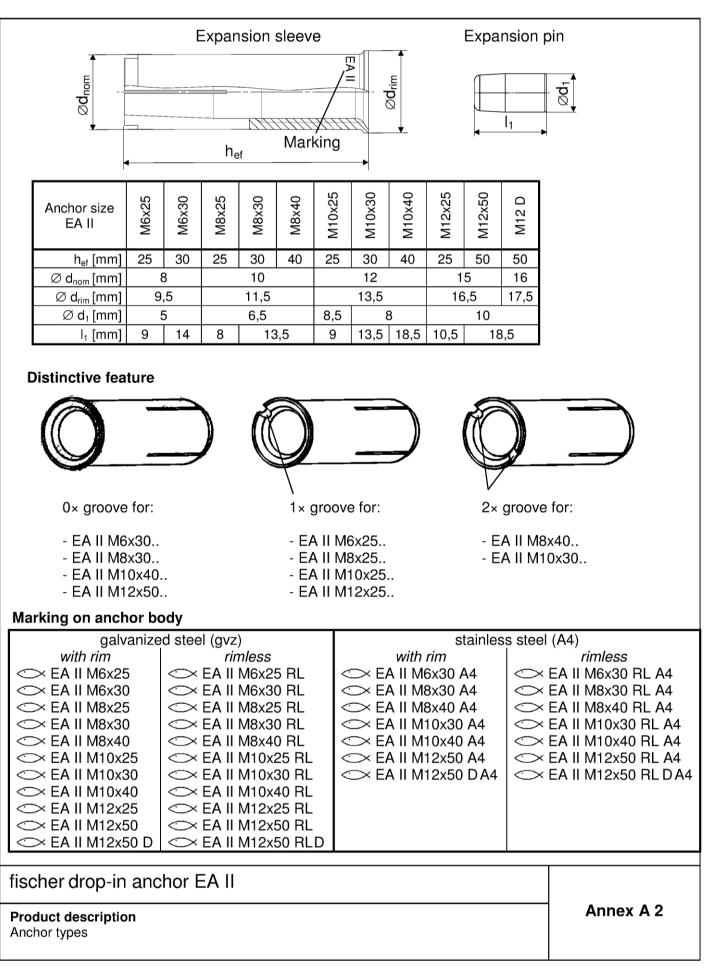
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 9 December 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p. p. Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-07/0142 of 9 December 2016

English translation prepared by DIBt



Page 6 of European Technical Assessment ETA-07/0142 of 9 December 2016

English translation prepared by DIBt

Page 7 of European Technical Assessment ETA-07/0142 of 9 December 2016

English translation prepared by DIBt

	Materia	
Designation	galvanised steel (\geq 5 µm)	stainless steel
Expansion sleeve	EN 10277:2008 or EN 10084:2008 or	
Expansion pin	EN 10111:2008 or EN 10263:2001 or EN 10087:1998 or ASTM A29/A29M	EN 10088:2005
Fastening screw or threaded rod	steel, property class 4.6, 5.6, 5.8 or 8.8 according to EN ISO 898-1:2012	property class 50, 70 or 80 according EN ISO 3506:2009

fischer drop-in anchor EA II

Product description Material Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads
- · Only to be used for multiple use for non-structural application
- · Fire exposure: only in concrete C12/15 to C50/60, not prestressed hollow concrete slabs

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C12/15 to C50/60 according to EN 206-1:2000
- Precast prestressed hollow concrete slabs with w/e ≤ 4,2 and strength classes C30/37 to C50/60: M6x25, M8x25, M10x25 and M12x25
- Cracked concrete and non-cracked concrete: all sizes

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel)

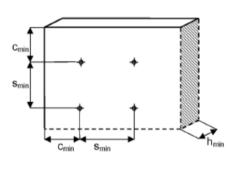
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
 - Anchorages under static or quasi-static actions are to be designed in accordance with:
 - ETAG 001, Annex C, design method B and C, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method B
 - Fasteners are only to be used for multiple use for non-structural application, according to: ETAG 001 Part 6, Edition August 2010
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4:2009
 - It must be ensured that local spalling of the concrete cover does not occur

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Create drill hole with hammer drill or with hollow drill and vacuum cleaner
- The anchor may only be used once
- Anchor expansion by impact using the setting tools given in Annex B 4. The anchor is property set if the stop
 of the setting tool reaches the expansion sleeve. The manual setting tool with installation control leaves a
 visible mark on the sleeve, as illustrated in Annex B4 and B 5


fischer drop-in anchor EA II

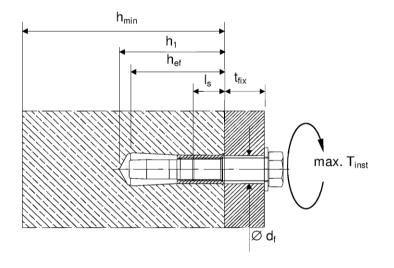
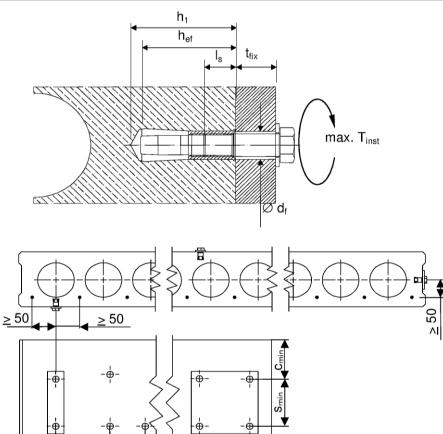

Intended Use Specifications

Table B1: Installation parameters for concrete C12/15 to C50/60

Anchor size			N	16		M8			M10		M	12	M12D
Nominal drill hole diameter	d _o	[mm]	8	3		10			12		15		16
Effective anchorage depth	h _{ef}	[mm]	25	30	25	30	40	25	30	40	25	50	50
Maximum installation torque	max. T _{inst}	[Nm]	4	4		8			15			35	
Minimum drill hole depth	h ₁	[mm]	27	32	27	33	43	27	33	43	27	54	54
Minimum screw-in depth	I _{s,min}	[mm]	(6		8		10 12			12		
Maximum screw-in depth	I _{s,max}	[mm]	1	4		14		1	14 17		14		22
Clearance hole diameter	$\emptyset d_{f} \le [mm]$ 7 9 12 14												
h _{min} = 80 mm													
Minimum spacing	S _{min}	[mm]	30	70	70	110	200	80	20)0	100	-	-
Minimum edge distance	C _{min}	[mm]	60	150	100	15	50	120	15	50	130	-	-
h _{min} = 100 mm													
Minimum spacing	S _{min}	[mm]	30	65	50	7	0	60	90	150	100		200
Minimum edge distance	C _{min}	[mm]	60	115	100	11	15	100	160	180	110	· '	200
h _{min} = 120 mm													
Minimum spacing	S _{min}	[mm]	30	65	50	7	0	60	85	95	100		145
Minimum edge distance	C _{min}	[mm]	60	115	100	11	15	100	140	150	110	:	200

Fastening screw or threaded rod:

- Minimum property class and materials according to table A1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix}, admissible tolerances and maximum screw length I_{s,max} as well as minimum screw-in depth I_{s,min}.


fischer drop-in anchor EA II

Intended Use Installation parameters

Table B2: Installation parameters for precast pre-stressed hollow concrete slabs

Anchor size		M6	M8	M10	M12	
Nominal drill hole diameter	do	[mm]	8	10	12	15
Effective anchorage depth	h _{ef}	[mm]	25			
Maximum installation torque	max. T _{inst}	[Nm]	4	8	15	35
Minimum drill hole depth	h ₁	[mm]	27			
Minimum screw-in depth	I _{s,min}	[mm]	6	8	10	12
Maximum screw-in depth	I _{s,max}	[mm]			14	
Clearance hole diameter	Ø d _f	[mm]	7	9	12	14
Minimum spacing	$S_{min} = S_{cr}$	[mm]	200			
Minimum edge distance	$C_{min} = C_{cr}$	[mm]	150			

Fastening screw or threaded rod:

Smir

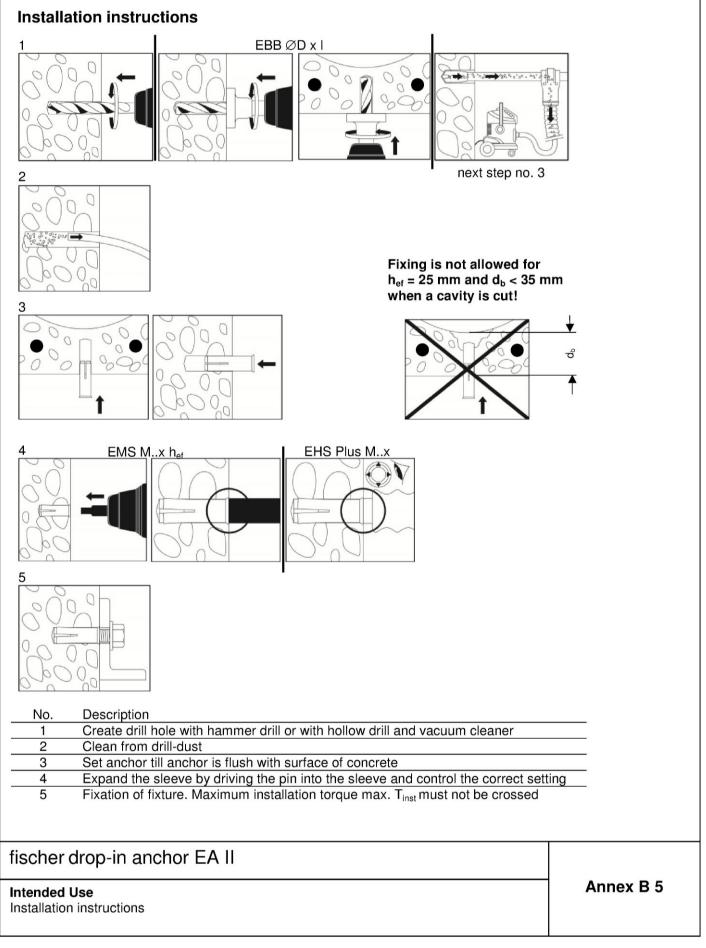
- Minimum property class and materials according to table A1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix} , admissible tolerances and maximum screw length $I_{s,max}$ as well as minimum screw-in depth $I_{s,min}$.

fischer drop-in anchor EA II

Intended Use Installation parameters

Setting & drilling tools			
Setting tools	Marking	Description	Marking on EA II with rim and rimless
	EHS Plus Mx h _{ef}	Manual setting tool with hand guard	
□ □[EHS Mx h _{ef}	Manual setting tool basic format	
	EMS Mx h _{ef}	Machine setting tool with SDS Plus	No marking
Drilling tools			
	EBB ØD x l	Stop drill	

Or other usual drillers


Table B3: Parameters of setting tools

Manual setting tool	Machine setting tool	Stop drill	Irill For anchor size		Ø D2	L
EHS M6x25/30	EMS M6x25/30 EBB 8x25 EBB 8x30 EA II M6x25 EA II M6x30 4,8		9,0	17,0		
EHS M8x25/30	EMS M8x25/30	EBB 10x25 EBB 10x30	EA II M8x25 EA II M8x30	6,4	11,0	18,0
EHS M8x40	EMS M8x40	EBB 10x40	EA II M8x40	1		28,0
EHS M10x25/30	EMS M10x25/30	EBB 12x25 EBB 12x30	EA II M10x25 EA II M10x30	7,9	13,0	18,0
EHS M10x40	EMS M10x40 EBB 12x40 EA II M10x40		EA II M10x40			24,0
EHS M12x25	EMS M12x25	EBB 15x25	EA II M12x25	10,2	16,5	15,2
EHS M12x50	EMS M12x50 EBB 15x50 EA II M12x50		10.2	16.5	20.0	
EHS M12x50	EMS M12x50	EBB 16x50	EA II M12x50 D	10,2	16,5	30,0

fischer drop-in anchor EA II

Intended Use Setting & Drilling tools

Table C1: Characteristic values due to design method B according to ETAG 001, Annex C or design method B according to CEN/TS 1992-4: 2009

Anchor size		Property class	M6 M8					M10			12/ 12D			
Effective anchorage depth	h _{ef} [mm]	/ screw rod			25	30	40	25	50					
All load directions														
Characteristic	F ⁰ вк ¹⁾	≥ A4-50	-		-	- 3 -		-	3		-			
resistance C12/15	[kN]	≥ 4.6	1,5	2	2			;	3	5	3	6		
Characteristic	F ⁰ вк ¹⁾	≥ A4-50	-		-			-	_		-			
resistance C20/25 to C50/60	[kN]	≥ 4.6	2	3	3		5	4	5	7,5	4	9		
Installation safety factor	$\gamma_2 = \gamma_{inst}$		1,0	1,2	1,0	1	,2	1,0	1	,2	1	1,0		
Characteristic spacing	s _{cr} [mm]		75	90	75	90	120	75	90	200	75	300		
Characteristic edge distance	c _{cr} [mm]		38	45	38	45	60	38	45	100	38	150		
Steel failure with lever	arm													
Characteristic resistance	M ⁰ _{Rk,s} 2) [Nm]	A4-50	-	8	- 19			-	37		-	66		
Partial safety factor	$\gamma_{\scriptscriptstyle Ms}$		2,38											
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	A4-70	-	11	-	26		26 -		26 - 52		2	-	92
Partial safety factor	$\gamma_{{}_{Ms}}$						1,	56						
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	A4-80	-	12	-	3	0	-	6	0	-	105		
Partial safety factor	$\gamma_{\scriptscriptstyle Ms}$						1,:	33						
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	4.6	6	,1		15			30		Į	52		
Partial safety factor	$\gamma_{{}_{Ms}}$						1,	67						
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.6	7	,6		19			37		(66		
Partial safety factor	$\gamma_{\scriptscriptstyle Ms}$						1,	67						
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.8	7,6 19			7,6 19 37				66				
Partial safety factor	$\gamma_{{}_{Ms}}$						1,:	25						
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	8.8	8.8 12 30 60					1	05					
Partial safety factor	$\gamma_{\scriptscriptstyle Ms}$						1,:	25						

¹⁾ The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the Member States is given in the informative Annex 1 of

ETAG 001 Part 6 (see: www.eota.eu)

²⁾ Characteristic bending moment M⁰_{Rk,s} for the equation (5.5) in ETAG 001, Annex C respectively Characteristic bending moment M⁰_{Rk,s} for the equation (D.5) in CEN/TS 1992-4-1

fischer drop-in anchor EA II

Performances

Characteristic values for tension loads in concrete according to design method B

Annex C 1

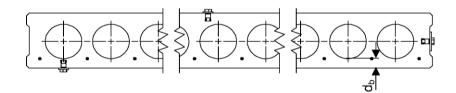


Table C2:Characteristic values for h_{ef} = 25 mm in precast pre-stressed hollow
concrete slabs according to design method C with C30/37 to C50/60

Anchor size		Property	M6	M8	M10	M12	
Effective anchorage depth	h _{ef} [mm]	class screw / rod	25				
All Load directions			galva	anised	steel; wi	th rim	
Flange thickness	d _b [mm]			≥ 35	(or 30 ³⁾)		
Characteristic resistance C30/37 to C50/60	F _{RK} ¹⁾ [kN]		2	2 3 4			
Installation safety factor	γ_2		1,0				
Characteristic spacing	$s_{cr} = s_{min} \ [mm]$		200				
Characteristic edge distance	$c_{cr} = c_{min} \; [mm]$		150				
Steel failure with lever arm							
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	4.6	6,1	15	30	52	
Partial safety factor	γ_{Ms}				1,67		
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.6	7,6	19	37	66	
Partial safety factor	Ϋ́мs				1,67		
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.8	7,6	19	37	66	
Partial safety factor	Ϋ́мs				1,25		
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	8.8	12	30	60	105	
Partial safety factor	Ύмs				1,25		

¹⁾ The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the Member States is given in the informative Annex 1 of ETAG 001 Part 6 (see: www.eota.eu)

 ²⁾ Characteristic bending moment M⁰_{Rk,s} for the equation (5.5) in ETAG 001, Annex C
 ³⁾ The anchor may be used in a flange thickness of 30 mm with the same characteristic resistance, but the drill hole is not allowed to cut a cavity (see Annex B5 Point 3). The use of the fischer stop drill EBB is recommended

fischer drop-in anchor EA II

Performances

Characteristic values for tension loads in hollow core slabs according to design method C

Annex C 2

Table C3:Characteristic resistance under fire exposure³⁾ in concrete C20/25 to
C50/60 according to design method B, ETAG 001 Annex C or CEN/TS 1992-4: 2009

fire resistance class All load direct	EA II tions		property class	M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50/ M12x50D					
R 30			steel	0,5	0,	,6	0,9	1,3			1,8							
R 60					F ⁰ _{Rk,fi} 1) [kN]	= ⁰ ¹) (1.5.1)	=0 1) ri o i	≥ 4.6	0	,5	0,6	0	,9	0,6	0,9	1,5	0,6	2,3
R 90			F _{Rk,fi} [KIN]	F [*] _{Rk,fi} ^{*/} [KN]		or	0	,4		0,	,6		0,	9		2,0		
R 120	020/20 10 000/00		≥ A4-50 ²⁾	0	,3		0,	,5		0,	,6	0,5	1,3					
	Characteristic spacing	s _{cr,fi} [mm]		100	120	100	120	160	100	120	160	100						
R 30 – R 120	R 30 – R 120 Characteristic edge distance	c _{cr,fi} [mm]		50	115	50	140	140	50	140	160	50	200					

¹⁾ In absence of other national regulations, a partial safety factor for the resistance of $\gamma_{m,fi}=1,0$ under fire stress is recommended

²⁾ Not for M..x25

³⁾ Not valid for precast pre-stressed hollow core slabs

fischer drop-in anchor EA II

Performances Characteristic loads for fire resistances Annex C 3