

DECLARATION OF PERFORMANCE

DoP: 0090

for fischer RM II (Bonded anchor for use in concrete) - EN

1. Unique identification code of the product-type: DoP: 0090

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 7

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-16/0340; 2017-02-14

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1), Safety in use (BWR 4)

• Characteristic values under static and quasi-static action, Displacements: See appendix, especially Annexes C 1 to C 6

Safety in case of fire (BWR 2)

Reaction to fire: Anchorages satisfy requirements for Class A 1

Resistance to fire: NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Mylal

Tumlingen, 2017-02-21

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific part

1 Technical description of the product

The fischer RM II is a bonded anchor for use in concrete consisting of a capsule RM II and a steel element according to Annex A1.

The capsule RM II is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

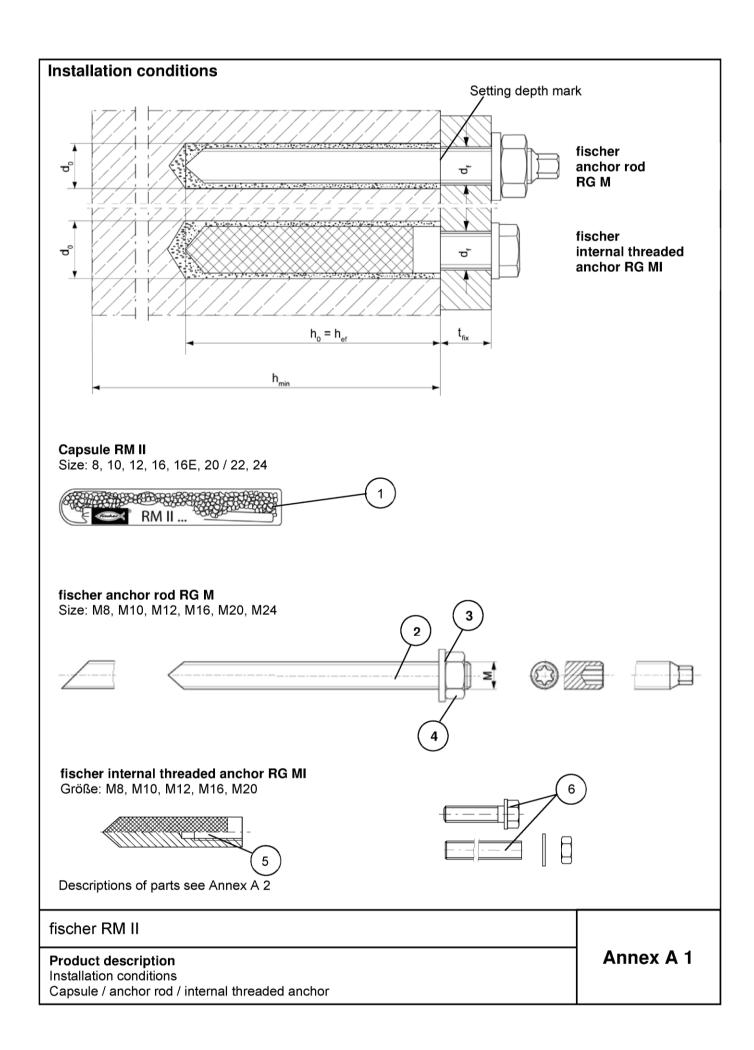
Essential characteristic	Performance
Characteristic values under static and quasi-static action, Displacements	See Annex C 1 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.


3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Table A1: Materials								
Part	Designation	Material						
1	Capsule RM II	Mortar, hardener, filler						
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C				
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 µm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm²	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm ²				
		F	Fracture elongation $A_5 > 8 \%$, ,				
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %				

fischer RM II	
Product description Materials	Annex A 2

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

		<u> </u>				
Anchorages subject to		RM II with				
		fischer a RO	nchor rod G M	fischer internal threaded anchor RG MI		
Hammer drilling with standard drill bit	E4444000000	all s	izes	all sizes		
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")		Nominal drill bit diameter (d ₀) 12 mm to 28 mm		izes		
Static and quasi static load, in	uncracked concrete	all sizes		all sizes	Tables:	
	cracked concrete	M10, M12, M16, M20, M24	Tables:			
Llee category	dry or wet concrete	all sizes	C1, C3, C4, C6	all sizes	C2, C3, C5, C7	
Use category	flooded hole	M12, M16, M20, M24		M8, M10, M16		
Installation temperature		-15 °C to +40 °C				
In-service	Temperature range	-40 °C bis +40 °C (max. long term temperature +24 °C and max. short term temperature +40 °C)				
temperature	Temperature range	-40 °C bis +120		m temperature +7 m temperature +1		

fischer RM II	
Intended Use Specifications (part 1)	Annnex B 1

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

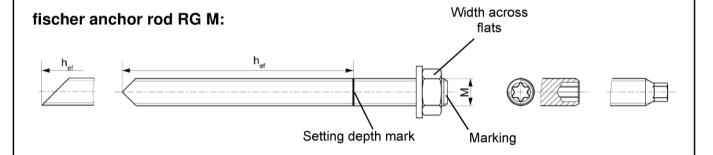
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:


- Anchor installation has to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

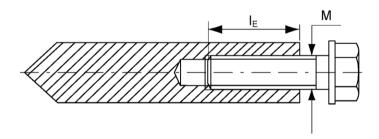
fischer RM II	
Intended Use Specifications (part 2)	Annnex B 2

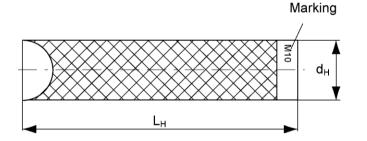
Table B2: Installation	parameters for	fischer anchor	rods RG M

Size				М8	M10	M12	M16	M20	M24
Width across flats		SW		13	17	19	24	30	36
Nominal drill bit diameter		do		10	12	14	18	25	28
Drill hole depth		ho				h _o =	h _{ef}		
Effective anchorage depth		h _{ef}		80	90	110	125	170	210
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85	105
Diameter of clearance hole in the fixture ¹⁾	pre- positioned anchorage	d_f		9	12	14	18	22	26
Minimum thickness of concrete member		h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀	
Maximum installation torque		$T_{inst,max}$	[Nm]	10	20	40	60	120	150

 $^{^{1)}}$ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Marking (on random place) fischer anchor rod RG M:


Property class 8.8, stainless steel, property class 80 or high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: •• Or colour coding according to DIN 976-1


fischer RM II	
Intended Use Installation parameters anchor rods RG M	Annex B 3

Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	do		14	18	20	24	32
Drill hole depth	ho				$h_0 = h_{ef}$		
Effective anchorage depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	s _{min} = c _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

fischer internal threaded anchor RG MI

Marking: Anchor size

e.g.: M10

Stainless steel additional A4

e.g.: M10 A4

High corrosion resistant steel

additional C e.g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 2, Table A1

fischer RM II	
Intended Use Installation parameters fischer internal threaded anchors RG MI	Annex B 4

Table B4: Dimensions of capsules	KM II
---	-------

Capsule RM	/ II		8	10	12	16	16 E	20 / 22	24
Capsule diameter	d_{P}	[mm]	9,0	10,5	12,5	16	5,5	23	3,0
Capsule length	L_P	[mm]	85	90	97	95	123	160	190

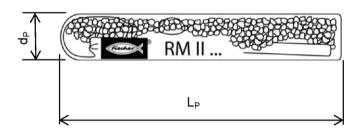


Table B5: Assignment of the capsule RM II to the fischer anchor rod RG M

Size RG M			М8	M10	M12	M16	M20	M24
Effective anchorage depth	h_{ef}	[mm]	80	90	110	125	170	210
Related capsule RM II		[-]	8	10	12	16	20 / 22	24

Table B6: Assignment of the capsule RM II to the fischer internal threaded anchor RG MI

Size RG MI			М8	M10	M12	M16	M20
Effective anchorage depth	h_{ef}	[mm]	90	90	125	160	200
Related capsule RM II		[-]	10	12	16	16E	24

Table B1: Minimum curing time

(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 $^{\circ}$ C)

Concrete temperature [°C]	Minimum curing time t _{cure} [minutes]
-15 to -10	30 hours
-9 to -5	16 hours
-4 to ±0	10 hours
+1 to +5	45
+6 to +10	30
+11 to +20	20
+21 to +30	5
+31 to +40	3

fischer RM II	
Intended Use	Annex B 5
Dimensions of the capsules, Assignment of the capsule to the anchor rod and internal	
threaded anchor, Minimum curing time	

Installation instructions part 1

Drilling and cleaning the hole (hammer drilling with standard drill bit)

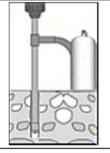
1

Specified drill hole depth $\mathbf{h_0}$ should be adhered to (e.g. mark on the drill bit). Drill the hole.

Drill hole diameter do and drill hole depth hosee Tables B2, B3

When reaching the drill hole depth \mathbf{h}_0 pull out the drill bit whilst power drill is switched on. To reduce the drill dust in the drill hole repeat this step minimum three times, beginning from the drill hole bottom (discharging the bore hole)

Trickling of the bore dust into the drill hole has to be avoided. (e.g. with exhausting the drill dust) Blowing out or brushing the drill hole is not necessary


Go to step 3

2

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

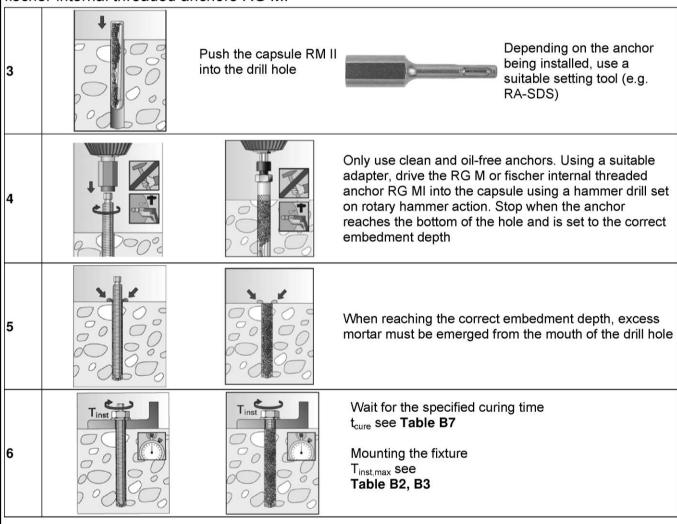
1

Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Tables B2**, **B3**

Go to step 3


2

fischer RM II	
Intended use Installation instructions part 1	Annex B 6

Installation instructions part 2

Installation of capsule RM II with fischer anchor rods or

fischer internal threaded anchors RG MI

fischer RM II	
Intended use Installation instructions part 2	Annex B 7

Size					M8	M10	M12	M16	M20	M24		
Bearii	ng capacity unde	r tensile loa	ad, ste	el failu	ire							
ng s	Steel zinc plated		5.8		19	29	43	79	123	177		
earii N _{RK}	Steel Zille plated		8.8		29	47	68	126	196	282		
it.be	Stainless steel	Property class	50	[kN]	19	29	43	79	123	177		
Charact.bearing capacity N _{Rk.s}	A4 and High corrosion	Class	70		26	41	59	110	172	247		
ට _ශ	resistant steel C		80		30	47	68	126	196	282		
Partia	Il safety factors ¹⁾											
_	Steel zinc plated		5.8				1,					
afet)			8.8				1,					
Partial safety factor Y _{Ms,N} Stainless steel At and High corrosion		Property class	50	[-]	2,86							
Partii fact	High corrosion	Class	70		1,50 ²⁾ /1,87							
ш	resistant steel C		80				1,6	30				
Bearii	ng capacity unde	r shear loa	d, stee	l failui	е							
witho	ut lever arm											
ور ۽	Steel zinc plated	5.8	5.8 8.8		9	15	21	39	61	89		
sarir V _{RK}	Steel zinc plated				15	23	34	63	98	141		
off.	Charact: bearing Charac	Property class	50	[kN]	9	15	21	39	61	89		
haract.b capacity	A4 and High corrosion	Class	70		13	20	30	55	86	124		
ပ် ပ	resistant steel C		80		15	23	34	63	98	141		
	ity factor acc. to CE 4-5:2009 Section 6		k ₂	[-]			1,	0				
with le	ever arm	ı							I			
ding _{Rk,s}	Steel zinc plated		5.8		19	37	65	166	324	560		
andii N ^o k			8.8		30	60	105	266	519	896		
t.be	Stainless steel	Property class	50	[Nm]	19	37	65	166	324	560		
Charact bending moment M ^{RK,S}	A4 and High corrosion	Class	70		26	52	92	232	454	784		
는 E	resistant steel C		80		30	60	105	266	519	896		
Partia	I safety factors ¹⁾					'						
>	Steel zinc plated		5.8				1,2	25				
afet ′™s,∨		Duna ma mtu i	8.8				1,2					
artial safety factor ‱,∨	Stainless steel A4 and	Property class	50	[-]			2,3					
Part fac	riigir corrosion		70		1,25 ²⁾ /1,56							
	resistant steel C		80				1,:	33				
	absence of other n lly for fischer RG N	•			resistant :	steel C						
 fisch	er RM II											

Table C2: Cha						ng capacity er tensile / s		r				
Size					M8	M10	M12	M16	M20			
Bearing capacity	y unde	r tensile lo	ad, ste	el fail	ure							
		Property	5.8		19	29	43	79	123			
Characteristic	NI.	class	8.8		29	47	68	108	179			
bearing capacity with screw	$N_{Rk,s}$	Property	A4	[kN]	26	41	59	110	172			
With Colow		class 70	С		26	41	59	110	172			
Partial safety fac	ctors ¹⁾											
		Property	5.8				1,50					
Partial safety	.,	class	8.8	[-]			1,50					
factor	γMs,N	Property	A4	[-]	1,87							
		class 70	С				1,87					
Bearing capacity	y unde	r shear loa	d, stee	l failu	re							
without lever arı	m											
Ob a sectoriatio		Property	5.8		9,2	14,5	21,1	39,2	62,0			
Characteristic bearing capacity	Va	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0			
with screw	V RK,S	Property	_A4	[KIV]	12,8	20,3	29,5	54,8	86,0			
		class 70	С		12,8	20,3	29,5	54,8	86,0			
Ductility factor ac 1992-4-5:2009 Se			k ₂	[-]			1,0					
with lever arm												
		Property	5.8		20	39	68	173	337			
Characteristic bending moment	M ⁰	class	8.8	[Nm]	30	60	105	266	519			
with screw	IVI Rk,s	Property	_A4	ַניייין 	26	52	92	232	454			
		class 70	С		26	52	92	232	454			
Partial safety fac	ctors ¹⁾											
		Property	5.8				1,25					
Partial safety	2/24	class	8.8	[-]			1,25					
factor	γ̃Ms,V	Property	A4	[-]			1,56					

1,56

Property class 70

fischer RM II	
Performances Characteristic steel bearing capacity of fischer internal threaded anchor RG MI	Annex C 2

¹⁾ In absence of other national regulations

						All S	Sizes		
	ity under tensile lo	ad							
-actors acc. to	CEN/TS 1992-4-5:		ection	6.2.3.1					
Uncracked cond	crete	k _{ucr}				10	D,1		
Cracked concre	ete	k _{cr}	[-]			7	,2		
Factors for the	compressive strei		concre	ete > C20	/25		,		
	C25/30	Ī				1,	02		
-	C30/37					1,	04		
ncreasing	C35/45						07		
actor -	C40/50	Ψ_{c}	[-]				08		
or τ _{Rk} -	C45/55						09		
-	C50/60						10		
Splitting failure						',	10		
spiriting randit	h / h _{ef} ≥ 2,0					1.0	h _{ef}		
- Edge distance	$2.0 > h / h_{ef} > 1.3$		\vdash				- 1,8 h		
Lage distance	$h / h_{ef} \le 1,3$	Ccr,sp	[mm]				- 1,011 6 h _{ef}		
Spacing	11 / Hef = 1,5								
<u> </u>	failure acc. to CEN	S _{cr,sp}	02 4 5	2000 600	tion 6 2 2		cr,sp		
Edge distance	Tallule acc. to CEI		/92-4- 5.	2009 360	,11011 0.2.3.		i h _{ef}		
Spacing		S _{cr,N}	[mm]			-	cr.N		
		Scr.N				2 (
· · · · · · · · · · · · · · · · · · ·	ity under cheer lee						PCF, IN		
Bearing capac	ity under shear loa						Cr, IN		
· · · · · · · · · · · · · · · · · · ·	-	d					PCF, IN		
Bearing capac Installation sat	fety factors	d γ ₂	[-]						
Bearing capac	fety factors	γ ₂ =	[-]				,0		
Bearing capac installation sat	fety factors onditions	d γ ₂	[-]						
Bearing capace Installation sate All installation concrete pry-concrete pry-concret	onditions	γ ₂ =	[-]						
Bearing capace Installation sate All installation concrete pryceractor k acc. to	onditions	$\gamma_2 = \gamma_{\text{inst}}$				1	,0		
Bearing capace Installation call installation call Concrete pryceractor k acc. to Section 5.2.3.3 CEN/TS 1992-4	onditions out failure TR029 resp. k ₃ acc. to	γ ₂ =	[-]			1			
Bearing capace Installation concrete pryceractor k acc. to Section 5.2.3.3 CEN/TS 1992-4 Section 6.3.3	onditions out failure TR029 Fresp. k ₃ acc. to 1-5:2009	$\gamma_2 = \gamma_{\text{inst}}$				1	,0		
Bearing capace Installation call installation call Concrete prycer Factor k acc. to Section 5.2.3.3 CEN/TS 1992-4 Section 6.3.3 Concrete edge	onditions out failure TR029 resp. k ₃ acc. to 1-5:2009	$\gamma_2 = \gamma_{\text{inst}}$				1	,0		
All installation concrete pry-concrete pry-c	onditions out failure TR029 resp. k ₃ acc. to -5:2009 failure (= I _f)	γ ₂ = γ _{inst}				2	,0		
Bearing capace Installation call installation ca	onditions out failure TR029 Fresp. k ₃ acc. to 1-5:2009 failure (= I _f)	γ ₂ = γ _{inst}	[-]			2	,0		
Bearing capace Installation calculation calculation calculation calculation calculation calculation calculation calculation diaset in the capacity of the calculation diaset in the calculation diaset in the calculation calc	onditions out failure TR029 Fresp. k ₃ acc. to 1-5:2009 failure (= I _f)	γ ₂ = γ _{inst}	[-]	MO	M40	1 2 h _{ef}	,0 ,0 = h ₀	Maa	MOA
Bearing capace installation sate All installation concrete pryce Factor k acc. to Section 5.2.3.3 CEN/TS 1992-4 Section 6.3.3 Concrete edge The value of her under shear load Calculation dia Size	onditions out failure TR029 Fresp. k ₃ acc. to 1-5:2009 failure (= I _f) ad ameters	γ ₂ = γ _{inst}	[-]	M8	M10	1 2 h _{ef}	,0 ,0 = h₀ M16	M20	
Bearing capace Installation calculation calculation calculation calculation calculation calculation calculation calculation diaset in the capacity of the calculation diaset in the calculation diaset in the calculation calc	onditions out failure TR029 Fresp. k ₃ acc. to 1-5:2009 failure (= I _f) ad ameters	γ ₂ = γ _{inst}	[-]	M8 8	M10 10	1 2 h _{ef}	,0 ,0 = h ₀	M20 20	M24 24

General design factors relating to the characteristic bearing capacity under

tensile / shear load

in hammer drill	ed hole	s; <mark>uncra</mark>	icked or	cracked	concrete	€			
Size			М8	M10	M12	M16	M20	M24	
Combined pullout and conci	ete cone	failure							
Calculation diameter	d	[mm]	8	10	12	16	20	24	
Uncracked concrete									
Characteristic bond resistance in uncracked concrete C20/25									
<u>Hammer-drilling with standard</u>	<u>drill bit o</u>	r hollow d	rill bit (dry a	and wet co	ncrete)				
Tem- I: 24 °C / 40 °C		FN 1 (man = 21	12,5	12,5	12,5	12,5	12,5	12,5	
perature II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	10,5	10,5	10,5	10,5	10,5	10,5	
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)									
Tem- I: 24 °C / 40 °C		22			12,5	12,5	12,5	12,5	
perature II: 72 °C / 120 °C	T _{Rk,ucr}	[N/mm ²]			10,5	10,5	10,5	10,5	
Installation safety factors									
Dry and wet concrete	- 0/ 0/-	[-]			1	,2			
Flooded hole	$-\gamma_2 = \gamma_{\text{inst}}$	r_1				1,	,4		
Cracked concrete									
Characteristic bond resistan									
Hammer-drilling with standard	<u>drill bit o</u>	r hollow d	rill bit (dry	and wet co	ncrete)				
Tem- I: 24 °C / 40 °C		FN 1 (21		4,5	4,5	4,5	4,5	4,5	
perature II: 72 °C / 120 °C	T _{Rk,cr}	[N/mm ²]		3,5	3,5	3,5	3,5	3,5	
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (flood	ded hole)					
Tem- I: 24 °C / 40 °C		2-			4,5	4,5	4,5	4,5	
perature II: 72 °C / 120 °C	- τ _{Rk,cr}	[N/mm ²]			3,5	3,5	3,5	3,5	
Installation safety factors									
Dry and wet concrete 1,2									
Flooded hole	$-\gamma_2 = \gamma_{\text{inst}}$	[-]	_			1	,4		

fischer RM II	
Performances Characteristic values for static or quasi-static action under tensile load for fischer anchor rod RG M (uncracked or cracked concrete)	Annex C 4

Tabelle C5: Characteristi RG MI in har							ors
Size			М8	M10	M12	M16	M20
Combined pullout and conci	ete cone	failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Incracked concrete							
Characteristic bond resistan							
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (dry an	d wet concre	<u>te)</u>		
Tem- I: 24 °C / 40 °C	_	FN1/21	11	11	11	11	11
perature II: 72 °C / 120 °C	- τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,5	9,5	9,5
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (floode	d hole)			
Tem- I: 24 °C / 40 °C		5N1/21	11	11		11	
perature ————————————————————————————————————	- τ _{Rk,ucr}	[N/mm ²]	9,5	9,5		9,5	
nstallation safety factors							
Ory and wet concrete		[-]			1,2		
Flooded hole	$-\gamma_2 = \gamma_{\text{inst}}$	[-]	1,	,4		1,4	
Cracked concrete							
Characteristic bond resistan							
Hammer-drilling with standard	drill bit o	r hollow di				T	Γ
Fem- I: 24 °C / 40 °C	- <u>-</u>	[N/mm ²]	4,5	4,5	4,5	4,5	4,5
ange II: 72 °C / 120 °C	T _{Rk,cr}	[IN/IIIII]	3,5	3,5	3,5	3,5	3,5
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (floode	d hole)			
Tem- I: 24 °C / 40 °C		551/21	4,5	4,5		4,5	
perature II: 72 °C / 120 °C	T _{Rk,cr}	[N/mm ²]	3,5	3,5		3,5	
nstallation safety factors							
Dry and wet concrete		[-]	l		1,2		

1,4

[-]

 $-\gamma_2 = \gamma_{inst}$

Flooded hole

fischer RM II	
Performances Characteristic values for static or quasi static action under topoile lead for fischer	Annex C 5
Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI (uncracked or cracked concrete)	

Tabelle C6: Displacements for fischer anchor rods RG M									
Size		М8	M10	M12	M16	M20	M24		
Displacement-Factors for tensile load ¹⁾									
Uncracked or cracked concrete; Temperature range I, II									
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12		
$\delta_{\text{N}\infty\text{-Faktor}}$	[[mm/(N/mm-)]	0,13	0,14	0,15	0,17	0,17	0,18		
Displacement-Factors for shear load ²⁾									
Uncracked or cracked concrete; Temperature range I, II									
$\delta_{\text{V0-Faktor}}$	[mama/kN]]	0,18	0,15	0,12	0,09	0,07	0,06		
δ _{V∞-Faktor}	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09		

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot \mathsf{V}_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Tabelle C7: Displacements for fischer internal threaded anchors RG MI

Size		М8	M10	M12	M16	M20			
Displacement-Factors for tensile load ¹⁾									
Uncracked or cracked concrete; Temperature range I, II									
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,09	0,10	0,10	0,11	0,19			
$\delta_{\text{N}\infty\text{-Faktor}}$	[[mm/(N/mm)]	0,13	0,15	0,15	0,17	0,19			
Displacement-Factors for shear load ²⁾									
Uncracked or cracked concrete; Temperature range I, II									
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,09	0,08	0,07	0,05			
$\delta_{V\infty ext{-Faktor}}$	[IIIII/KIN]	0,18	0,14	0,12	0,10	0,08			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

 $(V_{Ed}$: Design value of the applied shear force)

•					
fis	an.	Δr	$\mathbf{\mathcal{L}}$	N /I	
113	CI I	CI.		IVI	

Performances

Displacements for anchor rods RGM and fischer internal threaded anchors RG MI

Annex C 6