ELKO EP, s.r.o
Palackého 493
76901 Holešov, Všetuly
Czech Republic
Tel.: +420 573514211
e-mail: elko@elkoep.com
www.elkoep.com
Made in Czech Republic
02-13/2017 Rev.: 0

HRN-41
HRN-42

Monitoring voltage relay

Characteristics

- relay designed for monitoring DC and AC voltage in three ranges
- the relay controls the size of the voltage in two independent levels (Umin, Umax)
- setting the monitored level Umax (in \% of range)
- setting the monitored level Umin
(in \% of range - for HRN-42 -function WINDOW),
(in \% of the set upper limit - for HRN-41-function HYSTERESIS)
- adjustable function "MEMORY"
- function of second relay (independently / in parallel)
- adjustable delay for eliminating short-term outages and surges for every level independently
- galvanically separated power supply from monitoring inputs
- output contact $2 x$ switching 16 A / 250 V AC1 for each monitored voltage level
- in 3-MODULE design, fixing to DIN rail

Symbol

Connection

Description

1. Supply voltage terminals
2. Supply indication
3. Indication Umax
4. Output indication
5. Indication Umin
6. Current voltage terminals
7. AC/DC
if alternating current voltage is connected when measuring DC or direct current voltage is connected when measuring AC, or if there is incorrect polarity of DC, a polarity error is reported - both red LEDs flash and relays are open
8. Memory

- when the memory is switched on, the indication of an error status is maintained until the moment of reset by means of a button (if in between, the OK status occurs)

9. Output

- position 1 - both relays work simultaneously (they open in error status)
position 2 - the relays work independently - relay 15-16-18 corresponds to the upper level (Umax), relay 25-26-28 corresponds to the lower level (Umin)

10. Hysteresis - setting the hysteresis upon returning from an error state
11. t1 - time delay for Umax
12. Adjusting upper level - Umax
13. Button RESET
14. t2 - time delay for Umin
15. Adjusting bottom level - Umin
16. Output contact

Type of load	$\widetilde{\square}$ AC1			\square AC5a uncompensated	compensated	$\begin{aligned} & \text { (M) } A \mathbb{I V} E \mathrm{E} \\ & \text { AC5b } \end{aligned}$	3 AC6a	\cdots	 AC12
Mat. contacts AgNi , contact 16A	250V / 16A	250V / 5A	250V/3A	230V / 3A (690VA)	x	800W	x	250V / 3A	250V/10A
Type of load		\bar{m} AC14	AC15	\square				\bar{m} DC13	\bar{m} DC14
Mat. contacts AgNi , contact 16A	250V / 6A	250V / 6A	250V / 6A	24V/16A	24V / 6A	24V/4A	24V / 16A	24V/2A	24V/2A

HRN-41 HRN-42

Supply	
Supply terminals:	A1 - A2
Supply voltage:	AC $110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V
(AC $50-60 \mathrm{~Hz})$	

Ranges:*	AC/DC $10-50 \mathrm{~V}$ (AC 50-60 Hz)	AC/DC $32-160 \mathrm{~V}$ (AC 50-60 Hz)	AC/DC 100-500V (AC 50-60 Hz)
Terminals:	B1-C	B2-C	B3-C
Input resistance:	$212 \mathrm{k} \Omega$	$676 \mathrm{k} \Omega$	$2.12 \mathrm{M} \Omega$
Max. permanent current:	100 V	300 V	600 V
Inrush overload < 1ms:	250 V	700 V	1 kV
Time delay for Umax:	adjustable $0.1-10 \mathrm{~s}$		
Time delay for Umin:	adjustable 0.1-10 s		

Accuracy

Time deviation:	5%
Repeat accuracy:	$<1 \%$
Dependance on temperatur.:	$<0.1 \% /{ }^{\circ} \mathrm{C}$
Tolerance of limit values:	5%
Hysteresis (from fault to o.k.):	selectable $5 \% / 10 \%$ from range

Output

Number of contacts:	2x changeover / SPDT (AgNi / Silver Alloy)
Rated current:	$16 \mathrm{~A} / \mathrm{AC1}$
Switching capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A}<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{~V} \mathrm{AC} \mathrm{1} \mathrm{/} \mathrm{24} \mathrm{V} \mathrm{DC}$
Output indication:	yellow LED
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}

Other information

Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front panel / IP20 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×1.5 (AWG 12)
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$ (3.5" $\times 2$ 2 $\times 2.6$)
Weight:	246 g (8.7 oz.) ($110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V}$); 146 g (5.1 oz.) (24 V)
Standards:	EN 60255-6, EN 61010-1

[^0]

- if the value of the monitored voltage is in the zone between the set upper and lower levels, the status OK occurs - both relays are closed and the yellow LED illuminates. If the value of the monitored voltage is outside the set limits (> Umax or < Umin), an error state occurs.
when moving to an error state $U>U \max$, it times the delay t 1 and a red LED $>\mathrm{U}$ simultaneously flashes. After the t 1 time elapses, the red LED $>\mathrm{U}$ illuminates and the relevant relay opens.
- when moving to an error state $U<U m i n$, it times the delay t2 and a red LED $<U$ simultaneously flashes. After the time t 2 elapses, the red LED $<\mathrm{U}$ illuminates and the relevant relay opens.
when moving from the error status to the OK status, the relevant red LED immediately goes out, and the corresponding relay closes.

Warning

Device is constructed for connection for 1-phase main or DC circuits (according to types, it is necessary to observe voltage ranges) and must be installed in accordance with regulations and standards applicable in a country of use. Installation, connection and setting can be done only by a person with an adequate electro-technical qualification which has read and understood this instruction manual and product functions. The device contains protections against over-voltage peaks and disturbing elements in the supply main. Too ensure correct function of these protection elements it is necessary to front-end other protective elements of higher degree (A, B, C) and screening of disturbances of switched devices (contactors, motors, inductive load etc.) as it is stated in a standard. Before you start with installation, make sure that the device is not energized and that the main switch is OFF. Do not install the device to the sources of excessive electromagnetic disturbances. By correct installation, ensure good air circulation so the maximal allowed operational temperature is not exceeded in case of permanent operation and higher ambient temperature. While installing the device use screwdriver width approx. 2 mm . Keep in mind that this device is fully electronic while installing. Correct function of the device is also depended on transportation, storing and handling. In case you notice any signs of damage, deformation, malfunction or missing piece, do not install this device and claim it at the seller. After operational life treat the product as electronic waste.

[^0]: * Only one of the inputs can be connected.

