

DECLARATION OF PERFORMANCE

DoP: 0084

for fischer Highbond-Anchor FHB II Inject (Bonded anchor for use in concrete) - EN

1. Unique identification code of the product-type: DoP: 0084

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 7

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-16/0637; 2017-01-24

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1), Safety in use (BWR 4)

- Characteristic resistance for tension and shear loads: See appendix, especially Annexes C 1 to C 4
- Displacements under shear and tension loads: See appendix, especially Annex C 5 to C 6

Safety in case of fire (BWR 2)

Reaction to fire: Anchorages satisfy requirements for Class A 1

Resistance to fire: NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

Tumlingen, 2017-01-31

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

1.V. A. Bull i.V. W. Mylal

Specific Part

1 Technical description of the product

The fischer Highbond-Anchor FHB II is a torque controlled bonded anchor consisting of a mortar cartridge with mortar fischer FIS HB and an anchor rod FHB II - A L or FHB II - A S with hexagon nut and washer.

The anchor rod is placed into a drilled hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

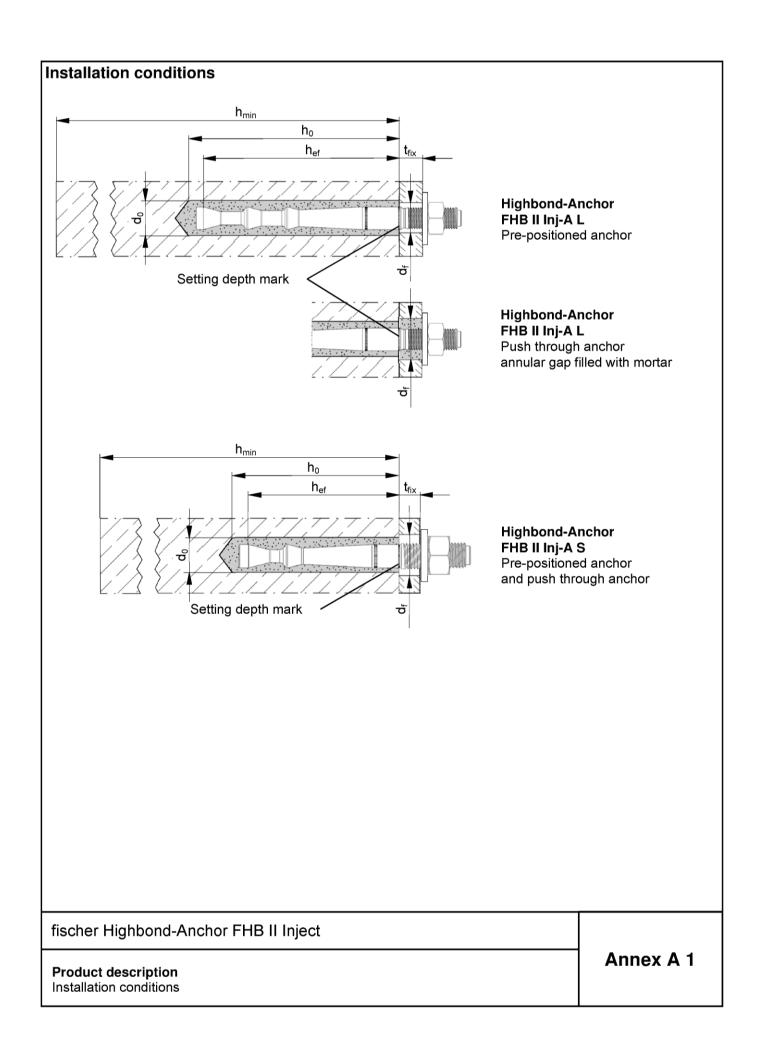
Essential characteristic	Performance		
Characteristic values under tension and shear load	See Annex C 1 to C 4		
Displacements under tension and shear loads	See Annex C 5 and C 6		

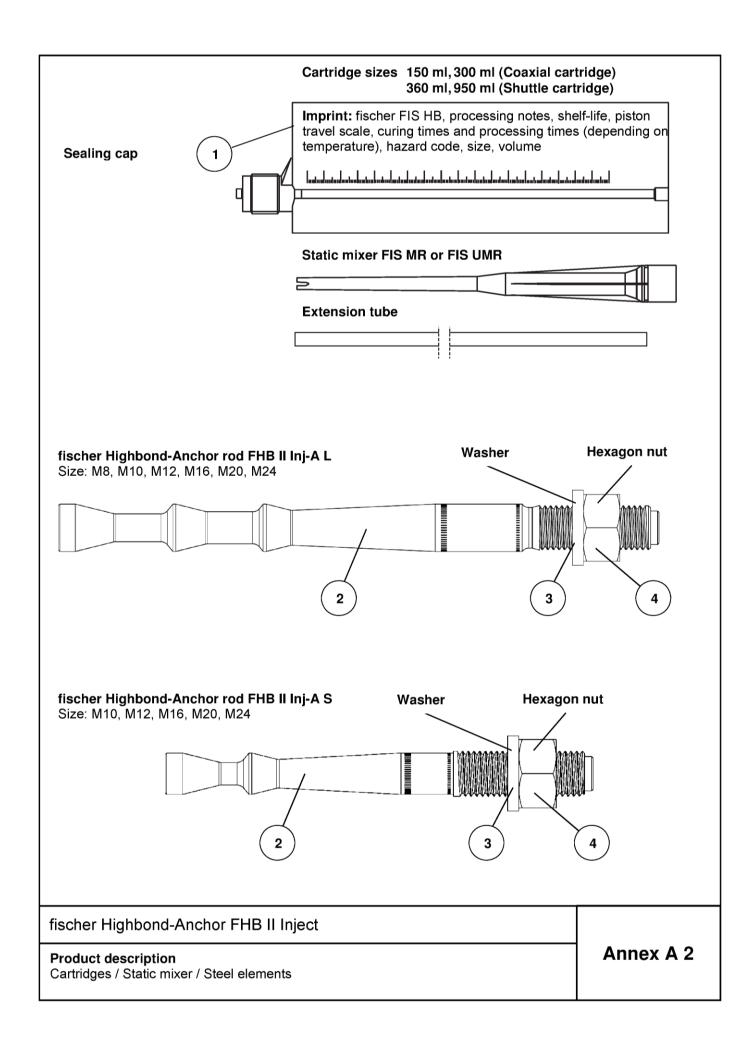
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.


3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Table A1: Materials									
Part	Designation	Material							
1	Mortar cartridge		Mortar, hardener, filler						
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C					
2	fischer Highbond- Anchor rod FHB II Inj-A L or FHB II Inj-A S	Property class 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation					
3	zinc plated ≥ 5 μm, Washer ISO 7089:2000 zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K		sher EN ISO 4042:1999 A2K 1.4578;1.4571; 1.4439; I						
4	Hexagon nut	Property class 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					

EN 10088-1:2014

fischer Highbond-Anchor FHB II Inject	
Product description Materials	Annex A 3

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages sub	ject to		fischer Injection mortar FIS HB with						
		FHB II	l Inj-A L	FHB II Inj-A S					
Hammer drilling with standard drill bit	######################################	all sizes							
Static or quasi	uncracked concrete	all sizes	Tables:	all sizes	Tables:				
static load, in	cracked concrete	all 31263	C1, C3, C5	all 31263	C2, C4, C6				
Use category	dry or wet concrete								
Kind of intallation	Pre- positioned anchor								
IIIaliation	Push through anchor								
Installation temp	erature	-5 °C to +40 °C							
In-service tempe	erature	-40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C)							

fischer Highbond-Anchor FHB II Inject	
Intended Use Specifications (part 1)	Annex B 1

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

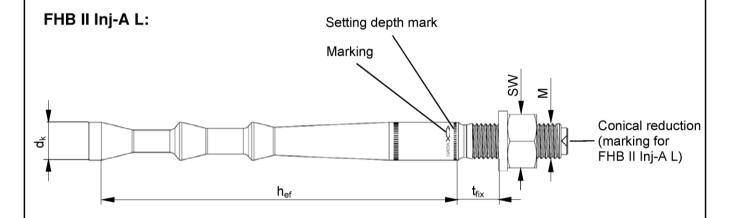
- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages under static or quasi-static actions are designed in accordance with
- EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4:2009

Installation:


- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Observe the effective anchorage depth
- · Overhead installation is allowed

fischer Highbond-Anchor FHB II Inject	
Intended Use Specifications (part 2)	Annex B 2

Table B2: Installation param	neters	for fis	cher l	Highbo	nd-An	chor r	ods Fh	IB II Ir	ij-A L		
		M8	M10	M12			M16		M20	M24	
Size FHB II Inj-A L			X	x	х	X	x	x	X	x	X
			60	95	100	120	125	145	160	210	210
Cone diameter	d_k		9,4	10,7	12	,5		16,8		23	,0
Width across flats	SW		13	17	1	9		24		30	36
Nominal drill bit diameter	d ₀		10	12	1.	4		18		25	
Drill hole depth	h₀		66	101	106	126	131	151	166	21	16
Effective anchorage depth	h_{ef}		60	95	100	120	125	145	160	21	10
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	4	0	5	0	55	60	70	9	0
Diameter of clearance hole pre-positioned anchorage	d _f ≤		9	12	1.	4		18		22	26
in the fixture ¹⁾ push through anchorage	d _f ≤		11	14	10	6	20			2	6
Minimum thickness of concrete member	h _{min}		100	14	10	17	70	190	220	28	30
Installation torque	T _{inst}	[Nm]	15	20	4	0		60		10	00

¹⁾ For larger clearance holes in the fixture see EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4-:2009

1500

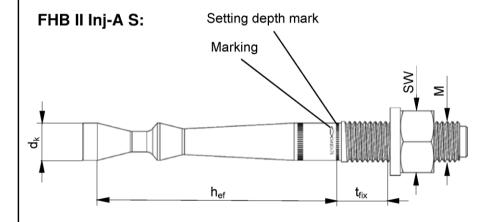
Marking:

Thickness of fixure

Work symbol, size of anchor, setting depth. e. g.: M10x95

 $t_{\text{fix}} \leq$

[mm]


For stainless steel additional **A4**. For high corrosion resistant steel additional **C.** For high corrosion resistant steel additional marking **C** also on the face.

fischer Highbond-Anchor FHB II Inject	
Intended Use Installation parameters fischer Highbond-Anchor rod FHB II Inj-A L	Annex B 3

				M	M10		M16	M20	M24		
Size FHB II Inj-A S				x	x	x	x	x	x		
				60	75	75	95	170	170		
Cone diameter		d_k		9	,4	11,3	14,5	23	3,0		
Width across flat	3	SW] [1	7	19	24	30	36		
Nominal drill bit diameter		do] [1	0	12	16	2	25		
Drill hole depth	ffective		epth h ₀		1	66	81	81	101	1	76
Effective anchorage depth				60	75	75	95	1	70		
Minimum spacing minimum edge di		S _{min} = C _{min}	[mm]		40		50	8	30		
Diameter of	pre-positioned anchorage	d _f ≤		1	2	14	18	22	26		
clearance hole n the fixture ¹⁾	push through anchorage	d _f ≤		12		14	18	26			
Minimum thickne of concrete mem		h _{min}		100	1:	20	150	24	40		
Installation torque	9	T _{inst}	[Nm]	1	5	30	50	10	00		

¹⁾ For larger clearance holes in the fixture see EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4-:2009

1500

 $t_{\text{fix}} \leq$

[mm]

Marking:

Thickness of fixure

Work symbol, size of anchor, setting depth. e. g.: M10x75

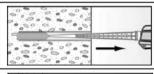
For stainless steel additional **A4**. For high corrosion resistant steel additional **C.** For high corrosion resistant steel additional marking **C** also on the face.

fischer Highbond-Anchor FHB II Inject	
Intended Use Installation parameters fischer Highbond-Anchor rod FHB II Inj-A S	Annex B 4

Table B4: Parameters of steel brush FIS BS								
Drill bit diameter	do	[mm]	10	12	14	16	18	25
Steel brush diameter	d_{b}	[mm]	11	13	16	2	0	27

Table B5: Maximum processing time of the mortar **FIS HB** and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

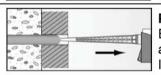
System temperature	Maximum processing time	Minimum curing time1)
[°C]	t _{work} [minutes]	t _{cure} [minutes]
-5 to ±0		6 hours
> +1 to +5		3 hours
> +6 to +10	15	90
> +11 to +20	6	35
> +21 to +30	4	20
> +31 to +40	2	12


¹⁾ In wet concrete the curing times must be doubled

fischer Highbond-Anchor FHB II Inject	
Intended Use Parameters of steel brush Processing times and curing times	Annex B 5

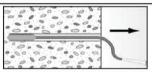
Installation instruction part 1 Installation with injection mortar FIS HB Drilling and cleaning the hole Drill the hole with hammer drill. Drill hole diameter do and drill hole depth ho see Tables B2, B3 Blow out the drill hole twice. If necessary, remove standing water out of the bore hole. min. 2x 2 For drill hole diameter For drill hole diameter d_0 < 25 mm with hand $d_0 = 25 \text{ mm with oil-free}$ blowout or oil-free compressed air (p ≥ 6 bar) compressed air Use a cleaning nozzle. Brush the bore hole twice. 3 Corresponding brushes see Table B4 min. 2x Blow out the drill hole twice. min. 2x 4 For drill hole diameter For drill hole diameter $d_0 < 25$ mm with hand $d_0 = 25 \text{ mm with oil-free}$ Þ blowout or oil-free compressed air (p ≥ 6 bar) compressed air Use a cleaning nozzle. Preparing the cartridge Remove the sealing cap 5 Screw on the static mixer (the spiral in the static mixer must be clearly visible) 6 Place the cartridge into the dispenser Extrude approximately 10 cm of material until the 7 resin is evenly grey in colour. Do not use mortar that is not uniformly grey Observe the processing If the processing time is exceeded, use a new static time, twork mixer and if necessary remove encrusted material in see Table B5 the cartridge mouth. fischer Highbond-Anchor FHB II Inject Annex B 6 Intended use Installation instruction part 1

Installation instruction part 2


Injection of the mortar

Fill approximately 2/3 of the drill hole with mortar. Exact quantity of mortar (travel scale on the cartridge) see instruction sheet.

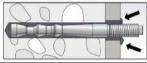
Fill the drill hole with mortar, always begin from the bottom of the hole to avoid bubbles


8

Push-through installation:

By using Highbond-Anchor rods **FHB II Inj-A L** the drill hole in the fixture must be also filled with mortar.

If Highbond-Anchor rods FHB II Inj-A S are used, this is this not necessary.



For drill hole depth ≥ 170 mm use an extension tube

Installation Highbond-Anchor rod FHB II Inj-A L and FHB II Inj-A S

9

Only use clean and oil-free anchor rods. Push the anchor rod down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor rod, excess mortar must be emerged around the anchor rod

10

For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges)

11

Wait for the specified curing time t_{cure} see **Table B5**

12

Mounting the fixture T_{inst} see

Tables B2 and B3

fischer Highbond-Anchor FHB II Inject

Intended use

Installation instruction part 2

Annex B 7

				M8	M10	M.	12		M16		M20	M24	
Size FHB II Inj-A L				x	x	x	x	x	х	x	х	x	
				60	95	100	120	125	145	160	210	210	
Bearing capacity u	nder tensile loa	ad, ste	el fail	ure									
01	Steel, zinc	plated		25,1	34,4	49	,8		96,6		13	7,6	
Characteristic —— resistance ——	Stainless st	eel A4	[kN]										
V _{Rk,s}	High cor		[1]	25,1	34,4	49	,8		96,6		137,6		
	resistant s	teel C											
Partial safety factor								4 =1)					
Partial safety —	Steel, zinc							1,51)					
actor	Stainless st		[-]					1,5 ¹⁾					
/Ms,N	High cor resistant s							1,5 ¹⁾					
Pullout failure in cra													
Characteristic resista		N _{Rk,p}	[kN]					2)					
Pullout and splitting				ete C20	/25								
Characteristic resista	nce	$N_{Rk,p}$	[kN]					2)					
Edge distance		C _{cr,sp}		300	476	380	600	375	500	580	63	30	
Spacing	S _{cr,sp}		[mm]	150	238	190	300	188	250	290	3	15	
Pullout and splitting	g failure in uncra	acked	concr	ete C20	/25								
Characteristic resista	nce	N _{Rk,p} ³⁾	[kN]	20	35	40	50	2)	75	95		_2)	
Edge distance		C _{cr,sp}	[mm]	1,5 h _{ef}									
Spacing		S _{cr,sp}	[mm]	3,0 h _{ef}									
Factors for the com	pressive streng	th of c	oncre	te > C2	0/25								
	C25/30							1,10					
	C30/37			1,22									
ncreasing factor	C35/45	Ψ_{c}	[-]	1,34									
or N _{Rk,p}	C40/50	Tc	[-]	1,41									
_	C45/55			1,48									
	C50/60							1,55					
Factors acc. to CEN	/TS 1992-4:2009	9 Secti	on 6.2	.2.3									
Jncracked concrete		k_{ucr}	[-]					10,1					
Cracked concrete		k _{cr}	[-]					7,2					
Concrete cone failu	re												
Effective anchorage		h_{ef}	[mm]	60	95	100	120	125	145	160	2	10	
Partial safety factor 1)	4)	γмс	[-]	1,5				1	,5				

Annex C 1

fischer Highbond-Anchor FHB II Inject

Characteristic values under static or quasi-static tension load for fischer Highbond-Anchor FHB II Inj-A L (uncracked or cracked concrete)

Performances

				M10		M12	M16	M20	M24	
Size FHB II Inj-A	s			x	x	x	x	x	x	
				60	75	75	95	170	170	
Bearing capacity	y under tensile lo	ad, ste	el fail	ure						
<u> </u>	Steel, zinc	plated		2	5,1	34,4	61,6	12	8,5	
Characteristic [–] resistance –	Stainless st	eel A4	[kN]							
N _{Rk,s}	High cor resistant s		[14.4]	25	5,1	34,4	61,6	128,5		
Partial safety fact	tors ¹⁾									
Double Loofets	Steel, zinc	plated				1,	5 ¹⁾			
Partial safety - factor	Stainless st	teel A4	[-]			1,	5 ¹⁾			
YMs,N	High cor resistant s		[-]			1,	5 ¹⁾			
Pullout failure in	cracked concrete	C20/25	5							
Characteristic resi	stance	$N_{Rk,p}$	[kN]				_2)			
Pullout and splitt	ing failure in uncr	acked	concre	te C20/25						
Characteristic resi	stance	$N_{Rk,p}$	[kN]				2)			
Edge distance		C _{cr,sp}	[mm]		300		340	51	10	
Spacing		S _{cr,sp}	[IIIIII]	150		170	25	55		
Pullout and splitt	ing failure in uncr		concre	te C20/25						
Characteristic resi	stance	$N_{Rk,p}^{3)}$	[kN]	20	20 25		40		_2)	
Edge distance		C _{cr,sp}	[mm]				h _{ef}			
Spacing		S _{cr,sp}				3,0	h _{ef}			
Factors for the co	ompressive strenç	gth of c	concret	e > C20/25	j					
	C25/30						10			
	C30/37						22			
Increasing factor	C35/45	Ψ_{c}	[-]				34			
for $N_{Rk,p}$	C40/50	- 0					41			
	C45/55						48			
	C50/60					1,	55			
	EN/TS 1992-4:200		on 6.2.	2.3						
Uncracked concre	te	k _{ucr}	[-]	10,1						
Cracked concrete		k _{cr}		7,2						
Concrete cone fa						-	0.5			
Effective anchora		h _{ef}	[mm]	60	7	5	95	17	70	
Partial safety facto	ı r ''''	γмс	[-] s	1,5			1,5			

fischer Highbond-Anchor FHB II Inject Performances Characteristic values under static or quasi-static tension load for fischer Highbond-Anchor FHB II Inj-A S (uncracked or cracked concrete) Annex C 2

	haracteristic valu <mark>scher Highbon</mark> d									d cond	crete)	
				M8	M10	М	12	M16			M20	M24
Size FHB II Inj	-A L			x	x	x	x	x	x	x	x	x
				60	95	100	120	125	145	160	210	210
Bearing capac	city under shear lo	ad, stee	el failu	ire								
without lever	arm											
	Steel, zinc plated			13,7	20,8	30),3		56,3		87,9	126,9
Characteristic resistance	Stainless steel A4 High corrosion resistant steel C	$V_{Rk,s}$	[kN]	14,6	23,2	33	3,7	62,7			97,9	141
with lever arm	1											
	Steel, zinc plated			31	62	10	105		266		519	896
Characteristic bending moment	ristic Stainless steel A4 and M ⁰ _{Rk,s} [Nm] High corrosion resistant steel C		05	266		519	896					
Partial safety	factors											
Partial safety fa	actor 1)	γ̃Ms,∨	[-]					1,25				
	acc. to CEN/TS Section 6.3.2.1	k ₂	[-]					1,0				
Concrete pry-	out failure											
Factor k acc. TR029 Section 5.2.3.3 or k ₃ acc.CEN/TS 1992-4-5:2009 Section 6.3.3		k ₍₃₎	[-]					2,0				
Partial safety factors ¹⁾					1,5							
Concrete edge	e failure											
Effective length	n of anchor	I _f	[mans]	60	95	100	112	125	14	14	2	00
Calculation dia	meter	d	[mm]	10	12	1	4		18		2	25
Partial safety fa	actor ¹⁾	γмс	[-]					1,5				

¹⁾ In absence of other national regulations

fischer Highbond-Anchor FHB II Inject	
Leistungen Charakteristische Werte für statische oder quasi-statische Querzugbelastung von fischer Highbond- Ankern FHB II – A L (ungerissener oder gerissener Beton)	Annex C 3

			M.	10	M12	M16	M20	M24	
Size FHB II Inj		x	x	x	x	x	x		
				60	75	75	95	170	170
Bearing capad	city under shear lo	ad, stee	el failu	re				-	
without lever	arm								
	Steel, zinc plated			19	,7	27,3	50,8	80,3	114,2
Characteristic resistance	Stainless steel A4	$V_{Rk,s}$	[kN]	24	,1	33,7	62,7	97,9	124,5
	High corrosion resistant steel C			24,1		33,7	62,7	97,9	141
with lever arm	1								
	Steel, zinc plated			6	2	105	266	519	896
Characteristic bending moment	Stainless steel A4 and High corrosion resistant steel C	$M^0_{Rk,s}$	[Nm]	62		105	266	519	896
Partial safety	factors						•	•	•
Partial safety fa	actor 1)	γ̃Ms,∨	[-]			1,	25		
	acc. to CEN/TS Section 6.3.2.1	k ₂	[-]			1	,0		
Concrete pry-	out failure								
Factor k acc. TR029 Section 5.2.3.3 or k ₃ acc.CEN/TS 1992-4-5:2009 Section 6.3.3			[-]	2,0					
Partial safety fa	[-]			1	,5				
Concrete edge	e failure								
Effective length	n of anchor	l _f	[mm]	60	7	75	95	1	70
Calculation dia		d	[[[]]]	10 12 16 25					
Partial safety fa	actor ¹⁾	γмс	[-]			1	,5	<u> </u>	·

fischer Highbond-Anchor FHB II Inject	
Performances	Annex C 4
Characteristic values under static or quasi-static shear load for fischer Highbond-Anchor FHB II Inj-A S (uncracked and cracked concrete)	

Table C5: D	isplace	ment fo	r fischer	Highbo	nd-Anch	or FHB	II Inj-A I	_				
		М8	M10	М	12		M16		M20	M24		
Size FHB II In	j-A L	x	x	x	x	x	×	x	x	x		
		60	95	100 120 125 145 160 210 210								
Displacement	t under te	ension loa	ad									
Cracked cond	crete											
Tension load	[kN]	6,6	15,9	17,1	22,5	24,0	30,0	34,7	52,2	52,2		
δ_{N0}	[1		0	,8				0,6				
$\delta_{N\infty}$	[mm]					1,7						
Uncracked co	oncrete											
Tension load	[kN]	9,3	22,3	3 24,0 31,6 33,6 42,0 48,7					73,2	73,2		
δ_{N0}	[]	0,2	0,4 0,6							,6		
$\delta_{N\infty}$	[mm]		1,7									
Displacement	t under s	hear load										
Uncracked or	cracked	concrete										
Steel zinc pla	ted											
Shear load	[kN]	7,8	11,9	17	7,3		32,2		50,2	72,5		
δ_{V0}	[mama]	1	,2			1,3			3	,5		
$\delta_{V\infty}$	[mm]	1	,8			2,0			5	,3		
Stainless stee	el A4			•								
Shear load	[kN]	8,7	13,3	19	9,3		35,8		55,9	80,6		
δ_{V0}	[]	1	,0							,5		
$\delta_{V\infty}$	[mm]	1	,5 1,7 3,3 5,3						,3			
High corrosic	n resista	nt steel C	;						•			
Shear load	[kN]	8,7	13,3	19	9,3		35,8		55,9	80,6		
δ_{V0}	[mm]	1	,2	1	,3		2,4		3,7	5,0		
$\delta_{V\infty}$	[mm]	1	,8	2	,0		3,6		5,6	7,5		

fischer Highbond-Anchor FHB II Inject	
Performances Displacement for fischer Highbond-Anchor FHB II Inj-A L	Annex C 5

Table C6: D	isplace	ment for fiscl	ner Highbo r	nd-Anchor	FHB II Inj-A	S				
		М1	0	M12	M16	M20	M24			
Size FHB II In	j-A S	x	x	x	x	x	x			
		60	75	75	95	95 170 17				
Displacement	under te	ension load								
Cracked cond	rete									
Tension load	[kN]	6,6	11	,1	15,9	3	8,0			
δ_{N0}	[mm]	0,8	0,	,3	0,4	C),6			
$\delta_{N\infty}$	[IIIIII]			•	1,7					
Uncracked co	ncrete									
Tension load	[kN]	9,3	9,3 15,6 22,3				3,3			
δ_{N0}	[mm]		0,2 0,5							
$\delta_{N\infty}$	נווווון	1,7								
Displacement	under s	hear load								
Uncracked or	cracked	concrete								
Steel zinc pla	ted									
Shear load	[kN]	11,	3	12,7	29,0	45,9	65,3			
δ_{V0}	[mm]	1,2	2	,	1,5	2	2,8			
$\delta_{V\infty}$	[]	1,8	3	2	2,3	4	1,2			
Stainless stee	el A4				_					
Shear load	[kN]	13,	13,8 19,3		35,8	55,9	71,1			
δ_{V0}	[mm]	1,0)	1,1 2,2		3	3,5			
$\delta_{V\infty}$	נווווון	1,	1,5 1,7 3,3 5,3							
High corrosio	n resista	nt steel C								
Shear load	[kN]	13,	8	19,3	35,8	55,9	80,6			
δ_{V0}	[mm]	1,2	2	1,3	2,4	3,7	5,0			
$\delta_{V\infty}$	[mm]	1,8	3	2,0	3,6	5,6	7,5			

fischer Highbond-Anchor FHB II Inject	
Performances Displacement for fischer Highbond-Anchor FHB II Inj-A S	Annex C 6