



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

# ETA-12/0148 of 11 January 2018

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Insulation support - metal nail KEW TSDL-V and TSD-V WS

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

KEW

Kunststofferzeugnisse GmbH Wilthen Dresdener Straße 19 02681 Wilthen DEUTSCHLAND

KFW

Kunststofferzeugnisse GmbH Wilthen Dresdener Straße 19 02681 Wilthen DEUTSCHLAND

13 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

ETA-12/0148 issued on 22 March 2017



# **European Technical Assessment ETA-12/0148**

Page 2 of 13 | 11 January 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z1814.18 8.06.04-4/18



**European Technical Assessment ETA-12/0148** 

Page 3 of 13 | 11 January 2018

English translation prepared by DIBt

#### **Specific Part**

#### 1 Technical description of the product

The nailed-in anchor KEW TSDL-V and TSD-V WS consists of an anchor sleeve made of virgin polypropylene and an accompanying specific nail of galvanised steel or stainless steel. The serrated expanding part of the anchor sleeve is slotted.

The anchor type KEW TSDL-V may in addition be combined with the insulation discs DSB 90, DSB 110 or DSB 140. The head of the special nail for this anchor type has an additional plastic coating.

An illustration and the description of the product are given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Safety and accessibility in use (BWR 4)

| Essential characteristic          | Performance   |
|-----------------------------------|---------------|
| Characteristic tension resistance | See Annex C 1 |
| Edge distances and spacing        | See Annex B 2 |
| Plate stiffness                   | See Annex C 2 |
| Displacements                     | See Annex C 2 |

#### 3.2 Energy economy and heat retention (BWR 6)

| Essential characteristic    | Performance   |
|-----------------------------|---------------|
| Point thermal transmittance | See Annex C 2 |

# Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-00-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

Z1814.18 8.06.04-4/18





# European Technical Assessment ETA-12/0148

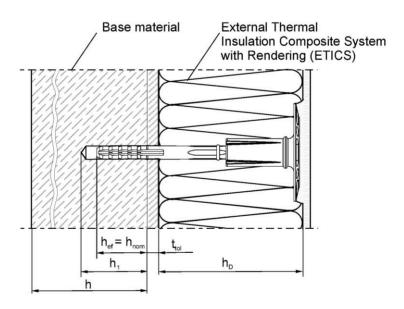
Page 4 of 13 | 11 January 2018

English translation prepared by DIBt

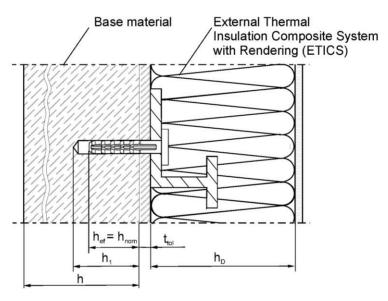
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 11 January 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

*beglaubigt:*Ziegler


Z1814.18 8.06.04-4/18



#### TSDL-V



# TSD-V WS



## Legend

h<sub>ef</sub> = effective anchorage depth

h<sub>1</sub> = depth of drill hole to deepest point
 h = thickness of base material (wall)
 h<sub>D</sub> = thickness of insulation material

ttol = thickness of equalizing layer or non-load bearing coating

| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS |           |
|-------------------------------------------------------------|-----------|
| Product description Installed condition                     | Annex A 1 |





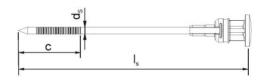


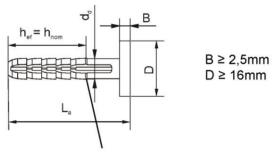


# Marking

Company logo – (KEW®) Anchor type – (TSDL-V) Diameter of drill hole – (ø8) Length of anchor – (e.g. 160)

# Special nail with special head





Table A1: Dimensions TSDL-V

|                           | Anchor sleeve                                                                           |                    |                | Special nail        |      |      |                      |
|---------------------------|-----------------------------------------------------------------------------------------|--------------------|----------------|---------------------|------|------|----------------------|
| Anchor type               | L <sub>a</sub> min                                                                      | L <sub>a</sub> max | d <sub>d</sub> | h <sub>ef</sub>     | ds   | С    | Is                   |
|                           | [mm]                                                                                    | [mm]               | [mm]           | [mm]                | [mm] | [mm] | [mm]                 |
| KEW - TSDL-V              | 120                                                                                     | 300                | 8              | 30                  | 4,0  | 35   | L <sub>a</sub> + 4mm |
| Determination of max. Thi | Determination of max. Thinkness of insulation [mm]: $h_{Dmax} = L_a - h_{ef} - t_{tol}$ |                    |                |                     |      |      |                      |
| e.g.:                     | Ļ                                                                                       | <sub>a</sub> = 160 |                | h <sub>ef</sub> = 3 | 0    | t    | tol= 10              |
| TSDL-V 8x160              | thickness of insulation material $h_{D \text{ max.}} = 120$                             |                    |                | 20                  |      |      |                      |

| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS                         |           |
|-------------------------------------------------------------------------------------|-----------|
| Product description                                                                 | Annex A 2 |
| Marking and dimensions of the anchor sleeve TSDL-V spreading element / special nail |           |



# TSD-V WS



marking of effective anchorage depth

# Special nail

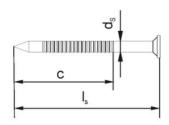
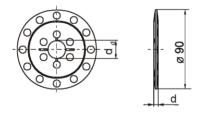


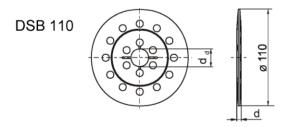

Table A2: Dimensions TSD-V WS

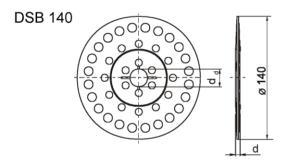
|                | Anchor sleeve      |                    |                | Special nail    |      | ail  |                      |
|----------------|--------------------|--------------------|----------------|-----------------|------|------|----------------------|
| Anchor type    | L <sub>a</sub> min | L <sub>a</sub> max | d <sub>d</sub> | h <sub>ef</sub> | ds   | С    | Is                   |
|                | [mm]               | [mm]               | [mm]           | [mm]            | [mm] | [mm] | [mm]                 |
| KEW - TSD-V WS | 50                 | 250                | 8              | 30              | 4,0  | 35   | L <sub>a</sub> + 4mm |

| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS |           |
|-------------------------------------------------------------|-----------|
| Produktbeschreibung                                         | Annex A 3 |
| Marking and dimensions of the anchor sleeve TSD-V WS        |           |
| spreading element / special nail                            |           |

English translation prepared by DIBt





Table A3: Materials


| Member        | Material                                                              |  |  |  |
|---------------|-----------------------------------------------------------------------|--|--|--|
| Anchor sleeve | virgin Polypropylen, colour: papyrus white                            |  |  |  |
|               | Steel, galvanized A2L or A2K according to EN ISO 4042:1999            |  |  |  |
| Special nail  | Stainless steel; mat.No. 1.4401, 1.4571 according to EN ISO 3506:2010 |  |  |  |

# Table A4: Insulation discs, diameters and material

**DSB** 90







| Insulation discs | Ø D<br>[mm] | Ø d <sub>d</sub><br>[mm] | d<br>[mm] | Material |
|------------------|-------------|--------------------------|-----------|----------|
| DSB 90           | 90          | 20                       | 5         | PA 6, PP |
| DSB 110          | 110         | 20                       | 5         | PA 6, PP |
| DSB 140          | 140         | 20                       | 5         | PA 6, PP |

| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS                      |           |
|----------------------------------------------------------------------------------|-----------|
| Product description  Materials  Additional plates in combination with KEW TSDL-V | Annex A 4 |



# Specifications of intended use

### Anchorages subject to:

 The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

#### Base materials:

- Normal weight concrete (use category A) according to Annex C1.
- Solid masonry (use category B), according to Annex C1.
- Hollow or perforated masonry (use category C), according to Annex C1.
- For other base materials of the use categories A, B or C the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051 edition December 2016.

#### **Temperature Range:**

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

### Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors  $\gamma_M$  = 2,0 and  $\gamma_F$  = 1,5, if there are no other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

#### Installation:

- Hole drilling by the drill modes according to Annex C1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS |           |
|-------------------------------------------------------------|-----------|
|                                                             | Annex B 1 |
| Intended use Specifications                                 |           |

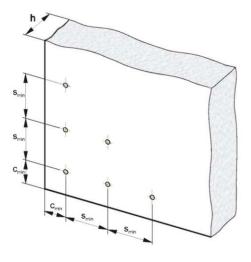
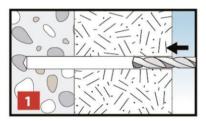



Table B1: Installation parameters

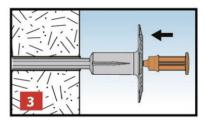
| Anchor type                            |                   |      | KEW- TSDL-V |
|----------------------------------------|-------------------|------|-------------|
| Drill hole diameter                    | d <sub>0</sub> =  | [mm] | 8           |
| Cutting diameter of drill bit          | $d_{cut} \leq$    | [mm] | 8,45        |
| Depth of drilled hole to deepest point | h₁ ≥              | [mm] | 40          |
| Effective anchorage depth              | h <sub>ef</sub> = | [mm] | 30          |


Table B2: Anchor distances and dimensions of members

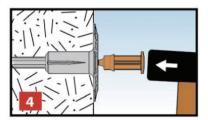
|                                 |                    |      | KEW- TSDL-V |
|---------------------------------|--------------------|------|-------------|
| Thickness of member             | h≥                 | [mm] | 100         |
| Minimum allowable spacing       | s <sub>min</sub> = | [mm] | 100         |
| Minimum allowable edge distance | c <sub>min</sub> = | [mm] | 100         |



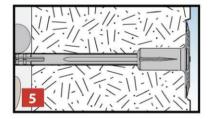
| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS                      |           |
|----------------------------------------------------------------------------------|-----------|
| Intended use Installation parameters, Anchor distances and dimensions of members | Annex B 2 |


## **Installation instructions**




Create a hole considering the drill method according Annex C 1




Holes to be cleaned of drilling dust.



Insert the anchor into the hole until the plate rests on the insulation.



Hammer in the nail with a matching hammer



Flush mounted installation

| Inculation cupport motel neil KEW TCDL V   | and KEWITCD V WC |
|--------------------------------------------|------------------|
| Insulation support – metal nail KEW TSDL-V | and KEW 13D-V WS |

Intended use Installation instructions Annex B 3

Z1822.18

electronic copy of the eta by dibt: eta-12/0148



Table C1: Characteristic resistance  $N_{\text{Rk}}$  in concrete and masonry for a single anchor in kN

| Base material                                                              | Bulk<br>density<br>P<br>[kg/dm³] | Minimum<br>Com-<br>pressive<br>strength<br>f <sub>b</sub> | Remarks                                                                           | Drill<br>method    | N <sub>Rk</sub> |
|----------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------|
| Concrete C12/15                                                            | [kg/am ]                         | [N/mm²]                                                   | EN 206-1:2000                                                                     | Hammer<br>drilling | 1,2             |
| Concrete C16/20 – C50/60                                                   |                                  |                                                           | EN 206-1:2000                                                                     | Hammer<br>drilling | 1,5             |
| Sand-lime solid bricks, KS<br>e.g. acc. to EN 771-2:2011                   | ≥1.8                             | 12                                                        | Vertically perforation up to 15%                                                  | Hammer<br>drilling | 1,5             |
| Clay bricks, Mz<br>e.g. acc. to EN 771-1:2011                              | ≥1.7                             | 20                                                        | Vertically perforation up to 15%                                                  | Hammer<br>drilling | 1,5             |
| Vertically perforated clay bricks, HLz e.g. acc. to EN 771-1:2011          | ≥1.0                             | 12                                                        | Vertically perforation more than 15% and less than 50% outer web thickness ≥ 12mm | Rotary<br>drilling | 0,9             |
| Vertically perforated sand-lime bricks<br>KS L, e.g. acc. to EN 771-2:2011 | ≥1.4                             | 12                                                        | Vertically<br>perforation more<br>than 15%<br>outer web thickness<br>≥ 22mm       | Rotary<br>drilling | 1,2             |
| Lightweight concrete hollow blocks, Hbl<br>e.g. acc. to EN 771-3:2011      | ≥0.8                             | 2                                                         | outer web thickness<br>≥ 50mm                                                     | Rotary<br>drilling | 0,6             |
| Vertically perforated clay bricks, HLz e.g. acc. to EN 771-1:2011          | ≥0.9                             | 12                                                        | outer web thickness<br>≥ 10mm                                                     | Rotary<br>drilling | 0,75            |
| Lightweight concrete solid blocks, Vbl<br>e.g. acc. to EN 771-3:2011       | ≥0.8                             | 2                                                         | outer web thickness ≥ 43mm                                                        | Hammer<br>drilling | 0,6             |

| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS                  |           |
|------------------------------------------------------------------------------|-----------|
| Performances Characteristic resistance of the anchor in concrete and masonry | Annex C 1 |



**Table C2: Displacements** 

| Base material                                                              | Bulk-<br>density-<br>class<br>ρ | Minimum<br>compressive<br>strength<br>f <sub>b</sub> | Tension<br>load<br>N | Displacements $\delta_m(\textbf{N})$ |
|----------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|----------------------|--------------------------------------|
|                                                                            | [kg/dm³]                        | [N/mm²]                                              | [kN]                 | [mm]                                 |
| Concrete C12/15<br>EN 206-1:2000                                           |                                 |                                                      | 0,4                  | 0,2                                  |
| Concrete C16/20 - C50/60<br>EN 206-1:2000                                  |                                 |                                                      | 0,5                  | 0,2                                  |
| Sand-lime solid bricks, KS<br>e.g. acc. to EN 771-2:2011                   | ≥1.8                            | 12                                                   | 0,5                  | 0,3                                  |
| Clay bricks, Mz<br>e.g. acc. to EN 771-1:2011                              | ≥1.7                            | 12                                                   | 0,5                  | 0,3                                  |
| Vertically perforated clay bricks, HLz e.g. acc. to EN 771-1:2011          | ≥1.0                            | 12                                                   | 0,3                  | 0,1                                  |
| Vertically perforated sand-lime bricks<br>KS L, e.g. acc. to EN 771-2:2011 | ≥1.4                            | 12                                                   | 0,4                  | 0,3                                  |
| Lightweight concrete hollow blocks, Hbl e.g. acc. to EN 771-3:2011         | ≥0.8                            | 2                                                    | 0,2                  | 0,2                                  |
| Vertically perforated clay bricks, HLz e.g. acc. to EN 771-1:2011          | ≥0.9                            | 12                                                   | 0,25                 | 0,1                                  |
| Lightweight concrete solid blocks, Vbl e.g. acc. to EN 771-3:2011          | ≥0.8                            | 2                                                    | 0,2                  | 0,1                                  |

Table C3: Point thermal transmittance according to EOTA Technical Report TR 025:2016-05

| Anchor type                      | Thickness of insulation  h <sub>D</sub> [mm] | Point thermal transmittance $\chi$ [W/K] |
|----------------------------------|----------------------------------------------|------------------------------------------|
| KEW TSDL-V<br>(galvanized steel) | 50 <sup>1)</sup> - 270                       | 0,002                                    |
| KEW TSDL-V (stainless steel)     | 50 <sup>2)</sup> - 270                       | 0,001                                    |

 $<sup>^{1)}</sup>$  for vertically perforated bricks and h\_D = 50 mm:  $\chi$  = 0,001 W/K  $^{2)}$  for concrete and h\_D = 50 mm:  $\chi$  = 0,002 W/K

Plate stiffness according to EOTA Technical Report TR 026:2016-05 Table C4:

| Anchor type | Diameter of anchor plate | Load resistance of<br>anchor plate | Plate stiffness |
|-------------|--------------------------|------------------------------------|-----------------|
|             | [mm]                     | [kN]                               | [kN/mm]         |
| KEW TSDL-V  | 60                       | 1,75                               | 1,24            |

| Insulation support – metal nail KEW TSDL-V and KEW TSD-V WS              |           |
|--------------------------------------------------------------------------|-----------|
| Performances Displacements, point thermal transmittance, plate stiffness | Annex C 2 |